Effect of gabaergic phenols on the dynamic and structure of lipid bilayers: a molecular dynamic simulation approach

Autores
Miguel, Virginia; Villarreal, Marcos Ariel; Garcia, Daniel Asmed
Año de publicación
2019
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central nervous system. GABAA receptors are activated by GABA and modulated by a wide variety of recognized drugs, including anesthetics and benzodiazepines. GABAergic phenols (GP) like propofol, thymol, chlorothymol, carvacrol and eugenol are positive allosteric modulators of R-GABA A. These GP are lipophilic, therefore their anesthetic activity could be the combined result of their specific interaction with the receptor, as well as nonspecific interactions with the receptor lipidic environment. We used molecular dynamic (MD) simulations to contribute to a description of the molecular events that occur at the membrane as part of the mechanism of general anesthesia. Previous MD simulations indicated that GP interacts with the polar interface of phospholipid bilayer. The presence of GP in a DPPC bilayer has an ordering effect on lipid acyl chains for carbons near the interface. We have now determined GP orientation in the bilayer by defining a set of molecular axes. We have calculated the correlation of the experimental membrane partition coefficients obtained by the IAM–HPLC method (log kIAM–W), with ΔG of partition obtained in biased MD and obtained a value of 0.935. Potential of mean force (PMF) calculations using umbrella sampling were used to characterize the forces that drive propofol partition into the bilayer. This analysis showed that propofol partition is mainly enthalpic driven at the polar region and entropic driven at the hydrocarbon chains. We calculated the GP-water, GP-GP and GP-DPPC non-bonding interactions. We found attractive Lennard-Jones (LJ) interactions between phenol and DPPC, while GP-GP LJ forces were found to be nearly zero. Finally, we determined the first hydration shell for PRF. While in the aquose phase PRF has ~35 water molecules, at the lipid phase there is an average of ~5 water molecules, except at translocations, were water molecules drop to cero. These results confirm that all the GP studied interact with membranes, and exert some alteration of the receptor lipid environment. Thus, it is possible that anesthetic activity of GPs could be the combined result of their interaction with specific receptor proteins (GABA-Rs) but also with the surrounding lipid molecules.
Fil: Miguel, Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina
Fil: Villarreal, Marcos Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Garcia, Daniel Asmed. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina
XLVIII Reunión Anual de la Sociedad Argentina de Biofísica
San Luis
Argentina
Sociedad Argentina de Biofísica
Materia
POPOFOL
PHENOL
GABA
MEMBRANE
MD SIMULATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/228601

id CONICETDig_5d3b3bd3f0bdb512cf0184cd421fef8e
oai_identifier_str oai:ri.conicet.gov.ar:11336/228601
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Effect of gabaergic phenols on the dynamic and structure of lipid bilayers: a molecular dynamic simulation approachMiguel, VirginiaVillarreal, Marcos ArielGarcia, Daniel AsmedPOPOFOLPHENOLGABAMEMBRANEMD SIMULATIONhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central nervous system. GABAA receptors are activated by GABA and modulated by a wide variety of recognized drugs, including anesthetics and benzodiazepines. GABAergic phenols (GP) like propofol, thymol, chlorothymol, carvacrol and eugenol are positive allosteric modulators of R-GABA A. These GP are lipophilic, therefore their anesthetic activity could be the combined result of their specific interaction with the receptor, as well as nonspecific interactions with the receptor lipidic environment. We used molecular dynamic (MD) simulations to contribute to a description of the molecular events that occur at the membrane as part of the mechanism of general anesthesia. Previous MD simulations indicated that GP interacts with the polar interface of phospholipid bilayer. The presence of GP in a DPPC bilayer has an ordering effect on lipid acyl chains for carbons near the interface. We have now determined GP orientation in the bilayer by defining a set of molecular axes. We have calculated the correlation of the experimental membrane partition coefficients obtained by the IAM–HPLC method (log kIAM–W), with ΔG of partition obtained in biased MD and obtained a value of 0.935. Potential of mean force (PMF) calculations using umbrella sampling were used to characterize the forces that drive propofol partition into the bilayer. This analysis showed that propofol partition is mainly enthalpic driven at the polar region and entropic driven at the hydrocarbon chains. We calculated the GP-water, GP-GP and GP-DPPC non-bonding interactions. We found attractive Lennard-Jones (LJ) interactions between phenol and DPPC, while GP-GP LJ forces were found to be nearly zero. Finally, we determined the first hydration shell for PRF. While in the aquose phase PRF has ~35 water molecules, at the lipid phase there is an average of ~5 water molecules, except at translocations, were water molecules drop to cero. These results confirm that all the GP studied interact with membranes, and exert some alteration of the receptor lipid environment. Thus, it is possible that anesthetic activity of GPs could be the combined result of their interaction with specific receptor proteins (GABA-Rs) but also with the surrounding lipid molecules.Fil: Miguel, Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; ArgentinaFil: Villarreal, Marcos Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Garcia, Daniel Asmed. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; ArgentinaXLVIII Reunión Anual de la Sociedad Argentina de BiofísicaSan LuisArgentinaSociedad Argentina de BiofísicaSociedad Argentina de BiofísicaAndujar, Sebastian AntonioCelej, Maria SoledadAcierno, Juan Pablo2019info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectReuniónBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/228601Effect of gabaergic phenols on the dynamic and structure of lipid bilayers: a molecular dynamic simulation approach; XLVIII Reunión Anual de la Sociedad Argentina de Biofísica; San Luis; Argentina; 2019; 140-140978-987-27591-7-9CONICET DigitalCONICETenghttps://ri.conicet.gov.ar/handle/11336/99864info:eu-repo/semantics/altIdentifier/url/https://biofisica.org.ar/reuniones-cientificas/reunionsab-previas/Nacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:37:34Zoai:ri.conicet.gov.ar:11336/228601instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:37:35.039CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Effect of gabaergic phenols on the dynamic and structure of lipid bilayers: a molecular dynamic simulation approach
title Effect of gabaergic phenols on the dynamic and structure of lipid bilayers: a molecular dynamic simulation approach
spellingShingle Effect of gabaergic phenols on the dynamic and structure of lipid bilayers: a molecular dynamic simulation approach
Miguel, Virginia
POPOFOL
PHENOL
GABA
MEMBRANE
MD SIMULATION
title_short Effect of gabaergic phenols on the dynamic and structure of lipid bilayers: a molecular dynamic simulation approach
title_full Effect of gabaergic phenols on the dynamic and structure of lipid bilayers: a molecular dynamic simulation approach
title_fullStr Effect of gabaergic phenols on the dynamic and structure of lipid bilayers: a molecular dynamic simulation approach
title_full_unstemmed Effect of gabaergic phenols on the dynamic and structure of lipid bilayers: a molecular dynamic simulation approach
title_sort Effect of gabaergic phenols on the dynamic and structure of lipid bilayers: a molecular dynamic simulation approach
dc.creator.none.fl_str_mv Miguel, Virginia
Villarreal, Marcos Ariel
Garcia, Daniel Asmed
author Miguel, Virginia
author_facet Miguel, Virginia
Villarreal, Marcos Ariel
Garcia, Daniel Asmed
author_role author
author2 Villarreal, Marcos Ariel
Garcia, Daniel Asmed
author2_role author
author
dc.contributor.none.fl_str_mv Andujar, Sebastian Antonio
Celej, Maria Soledad
Acierno, Juan Pablo
dc.subject.none.fl_str_mv POPOFOL
PHENOL
GABA
MEMBRANE
MD SIMULATION
topic POPOFOL
PHENOL
GABA
MEMBRANE
MD SIMULATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central nervous system. GABAA receptors are activated by GABA and modulated by a wide variety of recognized drugs, including anesthetics and benzodiazepines. GABAergic phenols (GP) like propofol, thymol, chlorothymol, carvacrol and eugenol are positive allosteric modulators of R-GABA A. These GP are lipophilic, therefore their anesthetic activity could be the combined result of their specific interaction with the receptor, as well as nonspecific interactions with the receptor lipidic environment. We used molecular dynamic (MD) simulations to contribute to a description of the molecular events that occur at the membrane as part of the mechanism of general anesthesia. Previous MD simulations indicated that GP interacts with the polar interface of phospholipid bilayer. The presence of GP in a DPPC bilayer has an ordering effect on lipid acyl chains for carbons near the interface. We have now determined GP orientation in the bilayer by defining a set of molecular axes. We have calculated the correlation of the experimental membrane partition coefficients obtained by the IAM–HPLC method (log kIAM–W), with ΔG of partition obtained in biased MD and obtained a value of 0.935. Potential of mean force (PMF) calculations using umbrella sampling were used to characterize the forces that drive propofol partition into the bilayer. This analysis showed that propofol partition is mainly enthalpic driven at the polar region and entropic driven at the hydrocarbon chains. We calculated the GP-water, GP-GP and GP-DPPC non-bonding interactions. We found attractive Lennard-Jones (LJ) interactions between phenol and DPPC, while GP-GP LJ forces were found to be nearly zero. Finally, we determined the first hydration shell for PRF. While in the aquose phase PRF has ~35 water molecules, at the lipid phase there is an average of ~5 water molecules, except at translocations, were water molecules drop to cero. These results confirm that all the GP studied interact with membranes, and exert some alteration of the receptor lipid environment. Thus, it is possible that anesthetic activity of GPs could be the combined result of their interaction with specific receptor proteins (GABA-Rs) but also with the surrounding lipid molecules.
Fil: Miguel, Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina
Fil: Villarreal, Marcos Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Garcia, Daniel Asmed. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina
XLVIII Reunión Anual de la Sociedad Argentina de Biofísica
San Luis
Argentina
Sociedad Argentina de Biofísica
description γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central nervous system. GABAA receptors are activated by GABA and modulated by a wide variety of recognized drugs, including anesthetics and benzodiazepines. GABAergic phenols (GP) like propofol, thymol, chlorothymol, carvacrol and eugenol are positive allosteric modulators of R-GABA A. These GP are lipophilic, therefore their anesthetic activity could be the combined result of their specific interaction with the receptor, as well as nonspecific interactions with the receptor lipidic environment. We used molecular dynamic (MD) simulations to contribute to a description of the molecular events that occur at the membrane as part of the mechanism of general anesthesia. Previous MD simulations indicated that GP interacts with the polar interface of phospholipid bilayer. The presence of GP in a DPPC bilayer has an ordering effect on lipid acyl chains for carbons near the interface. We have now determined GP orientation in the bilayer by defining a set of molecular axes. We have calculated the correlation of the experimental membrane partition coefficients obtained by the IAM–HPLC method (log kIAM–W), with ΔG of partition obtained in biased MD and obtained a value of 0.935. Potential of mean force (PMF) calculations using umbrella sampling were used to characterize the forces that drive propofol partition into the bilayer. This analysis showed that propofol partition is mainly enthalpic driven at the polar region and entropic driven at the hydrocarbon chains. We calculated the GP-water, GP-GP and GP-DPPC non-bonding interactions. We found attractive Lennard-Jones (LJ) interactions between phenol and DPPC, while GP-GP LJ forces were found to be nearly zero. Finally, we determined the first hydration shell for PRF. While in the aquose phase PRF has ~35 water molecules, at the lipid phase there is an average of ~5 water molecules, except at translocations, were water molecules drop to cero. These results confirm that all the GP studied interact with membranes, and exert some alteration of the receptor lipid environment. Thus, it is possible that anesthetic activity of GPs could be the combined result of their interaction with specific receptor proteins (GABA-Rs) but also with the surrounding lipid molecules.
publishDate 2019
dc.date.none.fl_str_mv 2019
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/conferenceObject
Reunión
Book
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
status_str publishedVersion
format conferenceObject
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/228601
Effect of gabaergic phenols on the dynamic and structure of lipid bilayers: a molecular dynamic simulation approach; XLVIII Reunión Anual de la Sociedad Argentina de Biofísica; San Luis; Argentina; 2019; 140-140
978-987-27591-7-9
CONICET Digital
CONICET
url http://hdl.handle.net/11336/228601
identifier_str_mv Effect of gabaergic phenols on the dynamic and structure of lipid bilayers: a molecular dynamic simulation approach; XLVIII Reunión Anual de la Sociedad Argentina de Biofísica; San Luis; Argentina; 2019; 140-140
978-987-27591-7-9
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://ri.conicet.gov.ar/handle/11336/99864
info:eu-repo/semantics/altIdentifier/url/https://biofisica.org.ar/reuniones-cientificas/reunionsab-previas/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.coverage.none.fl_str_mv Nacional
dc.publisher.none.fl_str_mv Sociedad Argentina de Biofísica
publisher.none.fl_str_mv Sociedad Argentina de Biofísica
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614396636037120
score 13.070432