A new model for lipid monolayer and bilayers based on thermodynamics of irreversible processes

Autores
Pinto, Oscar Alejandro; Disalvo, Edgardo Anibal
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Lipid monolayers are used as experimental model systems to study the physical chemical properties of biomembranes. With this purpose, surface pressure/area per molecule isotherms provide a way to obtain information on packing and compressibility properties of the lipids. These isotherms have been interpreted considering the monolayer as a two dimensional ideal or van der Waals gas without contact with the water phase. These modelistic approaches do not fit the experimental results. Based on Thermodynamics of Irreversible Processes (TIP), the expansion/compression process is interpreted in terms of coupled phenomena between area changes and water fluxes between a bidimensional solution of hydrated head groups in the monolayer and the bulk solution. The formalism obtained can reproduce satisfactorily the surface pressure/area per lipid isotherms of monolayer in different states and also can explain the area expansion and compression produced in particles enclosed by bilayers during osmotic fluxes. This novel approach gives relevance to the lipid-water interaction in restricted media near the membrane and provides a formalism to understand the thermodynamic and kinetic response of biointerphases to biological effectors.
Fil: Pinto, Oscar Alejandro. Universidad Nacional de Santiago del Estero. Instituto de Bionanotecnología del Noa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Bionanotecnología del Noa; Argentina
Fil: Disalvo, Edgardo Anibal. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Centro de Investigación en Biofísica Aplicada y Alimentos. - Universidad Nacional de Santiago del Estero. Centro de Investigación en Biofísica Aplicada y Alimentos; Argentina
Materia
Biological membranes
Thermodynamics of Irreversible Processes
Lipid monolayer
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/148659

id CONICETDig_5c9912a4a97b6fd5bf4be3dd46aa6b54
oai_identifier_str oai:ri.conicet.gov.ar:11336/148659
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A new model for lipid monolayer and bilayers based on thermodynamics of irreversible processesPinto, Oscar AlejandroDisalvo, Edgardo AnibalBiological membranesThermodynamics of Irreversible ProcessesLipid monolayerhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Lipid monolayers are used as experimental model systems to study the physical chemical properties of biomembranes. With this purpose, surface pressure/area per molecule isotherms provide a way to obtain information on packing and compressibility properties of the lipids. These isotherms have been interpreted considering the monolayer as a two dimensional ideal or van der Waals gas without contact with the water phase. These modelistic approaches do not fit the experimental results. Based on Thermodynamics of Irreversible Processes (TIP), the expansion/compression process is interpreted in terms of coupled phenomena between area changes and water fluxes between a bidimensional solution of hydrated head groups in the monolayer and the bulk solution. The formalism obtained can reproduce satisfactorily the surface pressure/area per lipid isotherms of monolayer in different states and also can explain the area expansion and compression produced in particles enclosed by bilayers during osmotic fluxes. This novel approach gives relevance to the lipid-water interaction in restricted media near the membrane and provides a formalism to understand the thermodynamic and kinetic response of biointerphases to biological effectors.Fil: Pinto, Oscar Alejandro. Universidad Nacional de Santiago del Estero. Instituto de Bionanotecnología del Noa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Bionanotecnología del Noa; ArgentinaFil: Disalvo, Edgardo Anibal. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Centro de Investigación en Biofísica Aplicada y Alimentos. - Universidad Nacional de Santiago del Estero. Centro de Investigación en Biofísica Aplicada y Alimentos; ArgentinaPublic Library of Science2019-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/148659Pinto, Oscar Alejandro; Disalvo, Edgardo Anibal; A new model for lipid monolayer and bilayers based on thermodynamics of irreversible processes; Public Library of Science; Plos One; 14; 4; 4-2019; 1-191932-6203CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0212269info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0212269info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:25:23Zoai:ri.conicet.gov.ar:11336/148659instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:25:24.026CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A new model for lipid monolayer and bilayers based on thermodynamics of irreversible processes
title A new model for lipid monolayer and bilayers based on thermodynamics of irreversible processes
spellingShingle A new model for lipid monolayer and bilayers based on thermodynamics of irreversible processes
Pinto, Oscar Alejandro
Biological membranes
Thermodynamics of Irreversible Processes
Lipid monolayer
title_short A new model for lipid monolayer and bilayers based on thermodynamics of irreversible processes
title_full A new model for lipid monolayer and bilayers based on thermodynamics of irreversible processes
title_fullStr A new model for lipid monolayer and bilayers based on thermodynamics of irreversible processes
title_full_unstemmed A new model for lipid monolayer and bilayers based on thermodynamics of irreversible processes
title_sort A new model for lipid monolayer and bilayers based on thermodynamics of irreversible processes
dc.creator.none.fl_str_mv Pinto, Oscar Alejandro
Disalvo, Edgardo Anibal
author Pinto, Oscar Alejandro
author_facet Pinto, Oscar Alejandro
Disalvo, Edgardo Anibal
author_role author
author2 Disalvo, Edgardo Anibal
author2_role author
dc.subject.none.fl_str_mv Biological membranes
Thermodynamics of Irreversible Processes
Lipid monolayer
topic Biological membranes
Thermodynamics of Irreversible Processes
Lipid monolayer
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Lipid monolayers are used as experimental model systems to study the physical chemical properties of biomembranes. With this purpose, surface pressure/area per molecule isotherms provide a way to obtain information on packing and compressibility properties of the lipids. These isotherms have been interpreted considering the monolayer as a two dimensional ideal or van der Waals gas without contact with the water phase. These modelistic approaches do not fit the experimental results. Based on Thermodynamics of Irreversible Processes (TIP), the expansion/compression process is interpreted in terms of coupled phenomena between area changes and water fluxes between a bidimensional solution of hydrated head groups in the monolayer and the bulk solution. The formalism obtained can reproduce satisfactorily the surface pressure/area per lipid isotherms of monolayer in different states and also can explain the area expansion and compression produced in particles enclosed by bilayers during osmotic fluxes. This novel approach gives relevance to the lipid-water interaction in restricted media near the membrane and provides a formalism to understand the thermodynamic and kinetic response of biointerphases to biological effectors.
Fil: Pinto, Oscar Alejandro. Universidad Nacional de Santiago del Estero. Instituto de Bionanotecnología del Noa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Bionanotecnología del Noa; Argentina
Fil: Disalvo, Edgardo Anibal. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Centro de Investigación en Biofísica Aplicada y Alimentos. - Universidad Nacional de Santiago del Estero. Centro de Investigación en Biofísica Aplicada y Alimentos; Argentina
description Lipid monolayers are used as experimental model systems to study the physical chemical properties of biomembranes. With this purpose, surface pressure/area per molecule isotherms provide a way to obtain information on packing and compressibility properties of the lipids. These isotherms have been interpreted considering the monolayer as a two dimensional ideal or van der Waals gas without contact with the water phase. These modelistic approaches do not fit the experimental results. Based on Thermodynamics of Irreversible Processes (TIP), the expansion/compression process is interpreted in terms of coupled phenomena between area changes and water fluxes between a bidimensional solution of hydrated head groups in the monolayer and the bulk solution. The formalism obtained can reproduce satisfactorily the surface pressure/area per lipid isotherms of monolayer in different states and also can explain the area expansion and compression produced in particles enclosed by bilayers during osmotic fluxes. This novel approach gives relevance to the lipid-water interaction in restricted media near the membrane and provides a formalism to understand the thermodynamic and kinetic response of biointerphases to biological effectors.
publishDate 2019
dc.date.none.fl_str_mv 2019-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/148659
Pinto, Oscar Alejandro; Disalvo, Edgardo Anibal; A new model for lipid monolayer and bilayers based on thermodynamics of irreversible processes; Public Library of Science; Plos One; 14; 4; 4-2019; 1-19
1932-6203
CONICET Digital
CONICET
url http://hdl.handle.net/11336/148659
identifier_str_mv Pinto, Oscar Alejandro; Disalvo, Edgardo Anibal; A new model for lipid monolayer and bilayers based on thermodynamics of irreversible processes; Public Library of Science; Plos One; 14; 4; 4-2019; 1-19
1932-6203
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0212269
info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0212269
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Public Library of Science
publisher.none.fl_str_mv Public Library of Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614252794478592
score 13.070432