A theory of 2-Pro-objects

Autores
Descotte, María Emilia; Dubuc, Eduardo Julio
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In [1], Grothendieck develops the theory of pro-objects over a category C . The fundamental property of the category Pro(C) is that there is an embedding C c −→ Pro(C), the category Pro(C) is closed under small cofiltered limits, and these limits are free in the sense that for any category E closed under small cofiltered limits, pre-composition with c determines an equivalence of categories Cat(Pro(C), E)+ 'Cat(C, E), (where the ” + ” indicates the full subcategory of the functors preserving cofiltered limits). In this paper we develop a 2-dimensional theory of pro-objects. Given a 2-category C , we define the 2-category 2-Pro(C) whose objects we call 2-pro-objects. We prove that 2-Pro(C) has all the expected basic properties adequately relativized to the 2-categorical setting, including the universal property corresponding to the one described above. We have at hand the results of Cat -enriched category theory, but our theory goes beyond the Cat -enriched case since we consider the non strict notion of pseudo-limit, which is usually that of practical interest.
Fil: Descotte, María Emilia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Dubuc, Eduardo Julio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
2-PRO-OBJECT
2-FILTERED
PSEUDO-LIMIT
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/29615

id CONICETDig_5c727e6c24e59341ec6a4bd674b5acd2
oai_identifier_str oai:ri.conicet.gov.ar:11336/29615
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A theory of 2-Pro-objectsDescotte, María EmiliaDubuc, Eduardo Julio2-PRO-OBJECT2-FILTEREDPSEUDO-LIMIThttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In [1], Grothendieck develops the theory of pro-objects over a category C . The fundamental property of the category Pro(C) is that there is an embedding C c −→ Pro(C), the category Pro(C) is closed under small cofiltered limits, and these limits are free in the sense that for any category E closed under small cofiltered limits, pre-composition with c determines an equivalence of categories Cat(Pro(C), E)+ 'Cat(C, E), (where the ” + ” indicates the full subcategory of the functors preserving cofiltered limits). In this paper we develop a 2-dimensional theory of pro-objects. Given a 2-category C , we define the 2-category 2-Pro(C) whose objects we call 2-pro-objects. We prove that 2-Pro(C) has all the expected basic properties adequately relativized to the 2-categorical setting, including the universal property corresponding to the one described above. We have at hand the results of Cat -enriched category theory, but our theory goes beyond the Cat -enriched case since we consider the non strict notion of pseudo-limit, which is usually that of practical interest.Fil: Descotte, María Emilia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Dubuc, Eduardo Julio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaA.C. Ehresmann2014-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/zipapplication/pdfhttp://hdl.handle.net/11336/29615Descotte, María Emilia; Dubuc, Eduardo Julio; A theory of 2-Pro-objects; A.C. Ehresmann; Cahiers de Topologie Et Geometrie Differentielle Categoriques; LV; 1; 1-2014; 1-331245-530XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/pdf/1406.5762.pdfinfo:eu-repo/semantics/altIdentifier/url/http://ehres.pagesperso-orange.fr/Cahiers/CTGDC%2055%202014/CahiersTopGDC%2055-1.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:43:50Zoai:ri.conicet.gov.ar:11336/29615instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:43:50.304CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A theory of 2-Pro-objects
title A theory of 2-Pro-objects
spellingShingle A theory of 2-Pro-objects
Descotte, María Emilia
2-PRO-OBJECT
2-FILTERED
PSEUDO-LIMIT
title_short A theory of 2-Pro-objects
title_full A theory of 2-Pro-objects
title_fullStr A theory of 2-Pro-objects
title_full_unstemmed A theory of 2-Pro-objects
title_sort A theory of 2-Pro-objects
dc.creator.none.fl_str_mv Descotte, María Emilia
Dubuc, Eduardo Julio
author Descotte, María Emilia
author_facet Descotte, María Emilia
Dubuc, Eduardo Julio
author_role author
author2 Dubuc, Eduardo Julio
author2_role author
dc.subject.none.fl_str_mv 2-PRO-OBJECT
2-FILTERED
PSEUDO-LIMIT
topic 2-PRO-OBJECT
2-FILTERED
PSEUDO-LIMIT
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In [1], Grothendieck develops the theory of pro-objects over a category C . The fundamental property of the category Pro(C) is that there is an embedding C c −→ Pro(C), the category Pro(C) is closed under small cofiltered limits, and these limits are free in the sense that for any category E closed under small cofiltered limits, pre-composition with c determines an equivalence of categories Cat(Pro(C), E)+ 'Cat(C, E), (where the ” + ” indicates the full subcategory of the functors preserving cofiltered limits). In this paper we develop a 2-dimensional theory of pro-objects. Given a 2-category C , we define the 2-category 2-Pro(C) whose objects we call 2-pro-objects. We prove that 2-Pro(C) has all the expected basic properties adequately relativized to the 2-categorical setting, including the universal property corresponding to the one described above. We have at hand the results of Cat -enriched category theory, but our theory goes beyond the Cat -enriched case since we consider the non strict notion of pseudo-limit, which is usually that of practical interest.
Fil: Descotte, María Emilia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Dubuc, Eduardo Julio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description In [1], Grothendieck develops the theory of pro-objects over a category C . The fundamental property of the category Pro(C) is that there is an embedding C c −→ Pro(C), the category Pro(C) is closed under small cofiltered limits, and these limits are free in the sense that for any category E closed under small cofiltered limits, pre-composition with c determines an equivalence of categories Cat(Pro(C), E)+ 'Cat(C, E), (where the ” + ” indicates the full subcategory of the functors preserving cofiltered limits). In this paper we develop a 2-dimensional theory of pro-objects. Given a 2-category C , we define the 2-category 2-Pro(C) whose objects we call 2-pro-objects. We prove that 2-Pro(C) has all the expected basic properties adequately relativized to the 2-categorical setting, including the universal property corresponding to the one described above. We have at hand the results of Cat -enriched category theory, but our theory goes beyond the Cat -enriched case since we consider the non strict notion of pseudo-limit, which is usually that of practical interest.
publishDate 2014
dc.date.none.fl_str_mv 2014-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/29615
Descotte, María Emilia; Dubuc, Eduardo Julio; A theory of 2-Pro-objects; A.C. Ehresmann; Cahiers de Topologie Et Geometrie Differentielle Categoriques; LV; 1; 1-2014; 1-33
1245-530X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/29615
identifier_str_mv Descotte, María Emilia; Dubuc, Eduardo Julio; A theory of 2-Pro-objects; A.C. Ehresmann; Cahiers de Topologie Et Geometrie Differentielle Categoriques; LV; 1; 1-2014; 1-33
1245-530X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/pdf/1406.5762.pdf
info:eu-repo/semantics/altIdentifier/url/http://ehres.pagesperso-orange.fr/Cahiers/CTGDC%2055%202014/CahiersTopGDC%2055-1.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/zip
application/zip
application/pdf
dc.publisher.none.fl_str_mv A.C. Ehresmann
publisher.none.fl_str_mv A.C. Ehresmann
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613379065380864
score 13.070432