Street context of various demographic groups in their daily mobility
- Autores
- Salgado Corrado, Ariel Olaf; Li, Weixin; Alhasoun, Fahad; Caridi, Délida Inés; Gonzalez, Marta
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present an urban science framework to characterize phone users’ exposure to different street context types based on network science, geographical information systems (GIS), daily individual trajectories, and street imagery. We consider street context as the inferred usage of the street, based on its buildings and construction, categorized in nine possible labels. The labels define whether the street is residential, commercial or downtown, throughway or not, and other special categories. We apply the analysis to the City of Boston, considering daily trajectories synthetically generated with a model based on call detail records (CDR) and images from Google Street View. Images are categorized both manually and using artificial intelligence (AI). We focus on the city’s four main racial/ethnic demographic groups (White, Black, Hispanic and Asian), aiming to characterize the differences in what these groups of people see during their daily activities. Based on daily trajectories, we reconstruct most common paths over the street network. We use street demand (number of times a street is included in a trajectory) to detect each group’s most relevant streets and regions. Based on their street demand, we measure the street context distribution for each group. The inclusion of images allows us to quantitatively measure the prevalence of each context and points to qualitative differences on where that context takes place. Other AI methodologies can further exploit these differences. This approach presents the building blocks to further studies that relate mobile devices’ dynamic records with the differences in urban exposure by demographic groups. The addition of AI-based image analysis to street demand can power up the capabilities of urban planning methodologies, compare multiple cities under a unified framework, and reduce the crudeness of GIS-only mobility analysis. Shortening the gap between big data-driven analysis and traditional human classification analysis can help build smarter and more equal cities while reducing the efforts necessary to study a city’s characteristics.
Fil: Salgado Corrado, Ariel Olaf. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina
Fil: Li, Weixin. Massachusetts Institute of Technology; Estados Unidos
Fil: Alhasoun, Fahad. University of California at Berkeley; Estados Unidos
Fil: Caridi, Délida Inés. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina
Fil: Gonzalez, Marta. University of California at Berkeley; Estados Unidos - Materia
-
AI
CDR
CNN
CONTEXT
GIS
IMAGES
MOBILITY
NETWORK
SEGREGATION
STREET - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/171867
Ver los metadatos del registro completo
id |
CONICETDig_5bb2d034c8c981d95c6248b0b5a8f8dc |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/171867 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Street context of various demographic groups in their daily mobilitySalgado Corrado, Ariel OlafLi, WeixinAlhasoun, FahadCaridi, Délida InésGonzalez, MartaAICDRCNNCONTEXTGISIMAGESMOBILITYNETWORKSEGREGATIONSTREEThttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2https://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We present an urban science framework to characterize phone users’ exposure to different street context types based on network science, geographical information systems (GIS), daily individual trajectories, and street imagery. We consider street context as the inferred usage of the street, based on its buildings and construction, categorized in nine possible labels. The labels define whether the street is residential, commercial or downtown, throughway or not, and other special categories. We apply the analysis to the City of Boston, considering daily trajectories synthetically generated with a model based on call detail records (CDR) and images from Google Street View. Images are categorized both manually and using artificial intelligence (AI). We focus on the city’s four main racial/ethnic demographic groups (White, Black, Hispanic and Asian), aiming to characterize the differences in what these groups of people see during their daily activities. Based on daily trajectories, we reconstruct most common paths over the street network. We use street demand (number of times a street is included in a trajectory) to detect each group’s most relevant streets and regions. Based on their street demand, we measure the street context distribution for each group. The inclusion of images allows us to quantitatively measure the prevalence of each context and points to qualitative differences on where that context takes place. Other AI methodologies can further exploit these differences. This approach presents the building blocks to further studies that relate mobile devices’ dynamic records with the differences in urban exposure by demographic groups. The addition of AI-based image analysis to street demand can power up the capabilities of urban planning methodologies, compare multiple cities under a unified framework, and reduce the crudeness of GIS-only mobility analysis. Shortening the gap between big data-driven analysis and traditional human classification analysis can help build smarter and more equal cities while reducing the efforts necessary to study a city’s characteristics.Fil: Salgado Corrado, Ariel Olaf. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; ArgentinaFil: Li, Weixin. Massachusetts Institute of Technology; Estados UnidosFil: Alhasoun, Fahad. University of California at Berkeley; Estados UnidosFil: Caridi, Délida Inés. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; ArgentinaFil: Gonzalez, Marta. University of California at Berkeley; Estados UnidosSpringer2021-06-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/171867Salgado Corrado, Ariel Olaf; Li, Weixin; Alhasoun, Fahad; Caridi, Délida Inés; Gonzalez, Marta; Street context of various demographic groups in their daily mobility; Springer; Applied Network Science; 6; 1; 12-6-2021; 1-142364-8228CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s41109-021-00382-7info:eu-repo/semantics/altIdentifier/url/https://appliednetsci.springeropen.com/articles/10.1007/s41109-021-00382-7info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:52:02Zoai:ri.conicet.gov.ar:11336/171867instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:52:02.784CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Street context of various demographic groups in their daily mobility |
title |
Street context of various demographic groups in their daily mobility |
spellingShingle |
Street context of various demographic groups in their daily mobility Salgado Corrado, Ariel Olaf AI CDR CNN CONTEXT GIS IMAGES MOBILITY NETWORK SEGREGATION STREET |
title_short |
Street context of various demographic groups in their daily mobility |
title_full |
Street context of various demographic groups in their daily mobility |
title_fullStr |
Street context of various demographic groups in their daily mobility |
title_full_unstemmed |
Street context of various demographic groups in their daily mobility |
title_sort |
Street context of various demographic groups in their daily mobility |
dc.creator.none.fl_str_mv |
Salgado Corrado, Ariel Olaf Li, Weixin Alhasoun, Fahad Caridi, Délida Inés Gonzalez, Marta |
author |
Salgado Corrado, Ariel Olaf |
author_facet |
Salgado Corrado, Ariel Olaf Li, Weixin Alhasoun, Fahad Caridi, Délida Inés Gonzalez, Marta |
author_role |
author |
author2 |
Li, Weixin Alhasoun, Fahad Caridi, Délida Inés Gonzalez, Marta |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
AI CDR CNN CONTEXT GIS IMAGES MOBILITY NETWORK SEGREGATION STREET |
topic |
AI CDR CNN CONTEXT GIS IMAGES MOBILITY NETWORK SEGREGATION STREET |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We present an urban science framework to characterize phone users’ exposure to different street context types based on network science, geographical information systems (GIS), daily individual trajectories, and street imagery. We consider street context as the inferred usage of the street, based on its buildings and construction, categorized in nine possible labels. The labels define whether the street is residential, commercial or downtown, throughway or not, and other special categories. We apply the analysis to the City of Boston, considering daily trajectories synthetically generated with a model based on call detail records (CDR) and images from Google Street View. Images are categorized both manually and using artificial intelligence (AI). We focus on the city’s four main racial/ethnic demographic groups (White, Black, Hispanic and Asian), aiming to characterize the differences in what these groups of people see during their daily activities. Based on daily trajectories, we reconstruct most common paths over the street network. We use street demand (number of times a street is included in a trajectory) to detect each group’s most relevant streets and regions. Based on their street demand, we measure the street context distribution for each group. The inclusion of images allows us to quantitatively measure the prevalence of each context and points to qualitative differences on where that context takes place. Other AI methodologies can further exploit these differences. This approach presents the building blocks to further studies that relate mobile devices’ dynamic records with the differences in urban exposure by demographic groups. The addition of AI-based image analysis to street demand can power up the capabilities of urban planning methodologies, compare multiple cities under a unified framework, and reduce the crudeness of GIS-only mobility analysis. Shortening the gap between big data-driven analysis and traditional human classification analysis can help build smarter and more equal cities while reducing the efforts necessary to study a city’s characteristics. Fil: Salgado Corrado, Ariel Olaf. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina Fil: Li, Weixin. Massachusetts Institute of Technology; Estados Unidos Fil: Alhasoun, Fahad. University of California at Berkeley; Estados Unidos Fil: Caridi, Délida Inés. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina Fil: Gonzalez, Marta. University of California at Berkeley; Estados Unidos |
description |
We present an urban science framework to characterize phone users’ exposure to different street context types based on network science, geographical information systems (GIS), daily individual trajectories, and street imagery. We consider street context as the inferred usage of the street, based on its buildings and construction, categorized in nine possible labels. The labels define whether the street is residential, commercial or downtown, throughway or not, and other special categories. We apply the analysis to the City of Boston, considering daily trajectories synthetically generated with a model based on call detail records (CDR) and images from Google Street View. Images are categorized both manually and using artificial intelligence (AI). We focus on the city’s four main racial/ethnic demographic groups (White, Black, Hispanic and Asian), aiming to characterize the differences in what these groups of people see during their daily activities. Based on daily trajectories, we reconstruct most common paths over the street network. We use street demand (number of times a street is included in a trajectory) to detect each group’s most relevant streets and regions. Based on their street demand, we measure the street context distribution for each group. The inclusion of images allows us to quantitatively measure the prevalence of each context and points to qualitative differences on where that context takes place. Other AI methodologies can further exploit these differences. This approach presents the building blocks to further studies that relate mobile devices’ dynamic records with the differences in urban exposure by demographic groups. The addition of AI-based image analysis to street demand can power up the capabilities of urban planning methodologies, compare multiple cities under a unified framework, and reduce the crudeness of GIS-only mobility analysis. Shortening the gap between big data-driven analysis and traditional human classification analysis can help build smarter and more equal cities while reducing the efforts necessary to study a city’s characteristics. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-06-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/171867 Salgado Corrado, Ariel Olaf; Li, Weixin; Alhasoun, Fahad; Caridi, Délida Inés; Gonzalez, Marta; Street context of various demographic groups in their daily mobility; Springer; Applied Network Science; 6; 1; 12-6-2021; 1-14 2364-8228 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/171867 |
identifier_str_mv |
Salgado Corrado, Ariel Olaf; Li, Weixin; Alhasoun, Fahad; Caridi, Délida Inés; Gonzalez, Marta; Street context of various demographic groups in their daily mobility; Springer; Applied Network Science; 6; 1; 12-6-2021; 1-14 2364-8228 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s41109-021-00382-7 info:eu-repo/semantics/altIdentifier/url/https://appliednetsci.springeropen.com/articles/10.1007/s41109-021-00382-7 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269132178849792 |
score |
13.13397 |