Static correlation functions and domain walls in glass-forming liquids: The case of a sandwich geometry

Autores
Gradenigo, Giacomo; Trozzo, Roberto; Cavagna, Andrea; Grigera, Tomas Sebastian; Verrocchio, Paolo
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The problem of measuring nontrivial static correlations in deeply supercooled liquids made recently some progress thanks to the introduction of amorphous boundary conditions, in which a set of free particles is subject to the effect of a different set of particles frozen into their (low temperature) equilibrium positions. In this way, one can study the crossover from nonergodic to ergodic phase, as the size of the free region grows and the effect of the confinement fades. Such crossover defines the so-called point-to-set correlation length, which has been measured in a spherical geometry, or cavity. Here, we make further progress in the study of correlations under amorphous boundary conditions by analyzing the equilibrium properties of a glass-forming liquid, confined in a planar (“sandwich”) geometry. The mobile particles are subject to amorphous boundary conditions with the particles in the surrounding walls frozen into their low temperature equilibrium configurations. Compared to the cavity, the sandwich geometry has three main advantages: (i) the width of the sandwich is decoupled from its longitudinal size, making the thermodynamic limit possible; (ii) for very large width, the behaviour off a single wall can be studied; (iii) we can use “anti-parallel” boundary conditions to force a domain wall and measure its excess energy. Our results confirm that amorphous boundary conditions are indeed a very useful new tool in the study of static properties of glass-forming liquids, but also raise some warning about the fact that not all correlation functions that can be calculated in this framework give the same qualitative results.
Fil: Gradenigo, Giacomo. Instituto de Investigaciones Universitaria Roma la Sapienza; Italia. Consiglio Nazionale delle Ricerche. Istituto Sistemi Complessi; Italia
Fil: Trozzo, Roberto. Instituto de Investigaciones Universitaria Roma la Sapienza; Italia
Fil: Cavagna, Andrea. Consiglio Nazionale delle Ricerche. Istituto Sistemi Complessi; Italia. Instituto de Investigaciones Universitaria Roma la Sapienza; Italia
Fil: Grigera, Tomas Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; Argentina. Instituto de Investigaciones Universitaria Roma la Sapienza; Italia
Fil: Verrocchio, Paolo. Università di Trento. Dipartimento di Fisica; Italia. Instituto de Investigaciones Universitaria Roma la Sapienza; Italia. Instituto de Biocomputación y Física de Sistemas Complejos; España
Materia
SUPERCOOLED LIQUIDS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/5314

id CONICETDig_5b690555f7e21bbf8a1ada5295e9fc15
oai_identifier_str oai:ri.conicet.gov.ar:11336/5314
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Static correlation functions and domain walls in glass-forming liquids: The case of a sandwich geometryGradenigo, GiacomoTrozzo, RobertoCavagna, AndreaGrigera, Tomas SebastianVerrocchio, PaoloSUPERCOOLED LIQUIDShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The problem of measuring nontrivial static correlations in deeply supercooled liquids made recently some progress thanks to the introduction of amorphous boundary conditions, in which a set of free particles is subject to the effect of a different set of particles frozen into their (low temperature) equilibrium positions. In this way, one can study the crossover from nonergodic to ergodic phase, as the size of the free region grows and the effect of the confinement fades. Such crossover defines the so-called point-to-set correlation length, which has been measured in a spherical geometry, or cavity. Here, we make further progress in the study of correlations under amorphous boundary conditions by analyzing the equilibrium properties of a glass-forming liquid, confined in a planar (“sandwich”) geometry. The mobile particles are subject to amorphous boundary conditions with the particles in the surrounding walls frozen into their low temperature equilibrium configurations. Compared to the cavity, the sandwich geometry has three main advantages: (i) the width of the sandwich is decoupled from its longitudinal size, making the thermodynamic limit possible; (ii) for very large width, the behaviour off a single wall can be studied; (iii) we can use “anti-parallel” boundary conditions to force a domain wall and measure its excess energy. Our results confirm that amorphous boundary conditions are indeed a very useful new tool in the study of static properties of glass-forming liquids, but also raise some warning about the fact that not all correlation functions that can be calculated in this framework give the same qualitative results.Fil: Gradenigo, Giacomo. Instituto de Investigaciones Universitaria Roma la Sapienza; Italia. Consiglio Nazionale delle Ricerche. Istituto Sistemi Complessi; ItaliaFil: Trozzo, Roberto. Instituto de Investigaciones Universitaria Roma la Sapienza; ItaliaFil: Cavagna, Andrea. Consiglio Nazionale delle Ricerche. Istituto Sistemi Complessi; Italia. Instituto de Investigaciones Universitaria Roma la Sapienza; ItaliaFil: Grigera, Tomas Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; Argentina. Instituto de Investigaciones Universitaria Roma la Sapienza; ItaliaFil: Verrocchio, Paolo. Università di Trento. Dipartimento di Fisica; Italia. Instituto de Investigaciones Universitaria Roma la Sapienza; Italia. Instituto de Biocomputación y Física de Sistemas Complejos; EspañaAmerican Institute of Physics2013-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/5314Gradenigo, Giacomo; Trozzo, Roberto; Cavagna, Andrea; Grigera, Tomas Sebastian; Verrocchio, Paolo; Static correlation functions and domain walls in glass-forming liquids: The case of a sandwich geometry; American Institute of Physics; Journal of Chemical Physics; 138; 12; 3-2013; 12A509-12A5090021-9606enginfo:eu-repo/semantics/altIdentifier/arxiv/1209.5954v1info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1209.5954v1info:eu-repo/semantics/altIdentifier/url/http://scitation.aip.org/content/aip/journal/jcp/138/12/10.1063/1.4771973info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4771973info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:08:18Zoai:ri.conicet.gov.ar:11336/5314instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:08:19.212CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Static correlation functions and domain walls in glass-forming liquids: The case of a sandwich geometry
title Static correlation functions and domain walls in glass-forming liquids: The case of a sandwich geometry
spellingShingle Static correlation functions and domain walls in glass-forming liquids: The case of a sandwich geometry
Gradenigo, Giacomo
SUPERCOOLED LIQUIDS
title_short Static correlation functions and domain walls in glass-forming liquids: The case of a sandwich geometry
title_full Static correlation functions and domain walls in glass-forming liquids: The case of a sandwich geometry
title_fullStr Static correlation functions and domain walls in glass-forming liquids: The case of a sandwich geometry
title_full_unstemmed Static correlation functions and domain walls in glass-forming liquids: The case of a sandwich geometry
title_sort Static correlation functions and domain walls in glass-forming liquids: The case of a sandwich geometry
dc.creator.none.fl_str_mv Gradenigo, Giacomo
Trozzo, Roberto
Cavagna, Andrea
Grigera, Tomas Sebastian
Verrocchio, Paolo
author Gradenigo, Giacomo
author_facet Gradenigo, Giacomo
Trozzo, Roberto
Cavagna, Andrea
Grigera, Tomas Sebastian
Verrocchio, Paolo
author_role author
author2 Trozzo, Roberto
Cavagna, Andrea
Grigera, Tomas Sebastian
Verrocchio, Paolo
author2_role author
author
author
author
dc.subject.none.fl_str_mv SUPERCOOLED LIQUIDS
topic SUPERCOOLED LIQUIDS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The problem of measuring nontrivial static correlations in deeply supercooled liquids made recently some progress thanks to the introduction of amorphous boundary conditions, in which a set of free particles is subject to the effect of a different set of particles frozen into their (low temperature) equilibrium positions. In this way, one can study the crossover from nonergodic to ergodic phase, as the size of the free region grows and the effect of the confinement fades. Such crossover defines the so-called point-to-set correlation length, which has been measured in a spherical geometry, or cavity. Here, we make further progress in the study of correlations under amorphous boundary conditions by analyzing the equilibrium properties of a glass-forming liquid, confined in a planar (“sandwich”) geometry. The mobile particles are subject to amorphous boundary conditions with the particles in the surrounding walls frozen into their low temperature equilibrium configurations. Compared to the cavity, the sandwich geometry has three main advantages: (i) the width of the sandwich is decoupled from its longitudinal size, making the thermodynamic limit possible; (ii) for very large width, the behaviour off a single wall can be studied; (iii) we can use “anti-parallel” boundary conditions to force a domain wall and measure its excess energy. Our results confirm that amorphous boundary conditions are indeed a very useful new tool in the study of static properties of glass-forming liquids, but also raise some warning about the fact that not all correlation functions that can be calculated in this framework give the same qualitative results.
Fil: Gradenigo, Giacomo. Instituto de Investigaciones Universitaria Roma la Sapienza; Italia. Consiglio Nazionale delle Ricerche. Istituto Sistemi Complessi; Italia
Fil: Trozzo, Roberto. Instituto de Investigaciones Universitaria Roma la Sapienza; Italia
Fil: Cavagna, Andrea. Consiglio Nazionale delle Ricerche. Istituto Sistemi Complessi; Italia. Instituto de Investigaciones Universitaria Roma la Sapienza; Italia
Fil: Grigera, Tomas Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; Argentina. Instituto de Investigaciones Universitaria Roma la Sapienza; Italia
Fil: Verrocchio, Paolo. Università di Trento. Dipartimento di Fisica; Italia. Instituto de Investigaciones Universitaria Roma la Sapienza; Italia. Instituto de Biocomputación y Física de Sistemas Complejos; España
description The problem of measuring nontrivial static correlations in deeply supercooled liquids made recently some progress thanks to the introduction of amorphous boundary conditions, in which a set of free particles is subject to the effect of a different set of particles frozen into their (low temperature) equilibrium positions. In this way, one can study the crossover from nonergodic to ergodic phase, as the size of the free region grows and the effect of the confinement fades. Such crossover defines the so-called point-to-set correlation length, which has been measured in a spherical geometry, or cavity. Here, we make further progress in the study of correlations under amorphous boundary conditions by analyzing the equilibrium properties of a glass-forming liquid, confined in a planar (“sandwich”) geometry. The mobile particles are subject to amorphous boundary conditions with the particles in the surrounding walls frozen into their low temperature equilibrium configurations. Compared to the cavity, the sandwich geometry has three main advantages: (i) the width of the sandwich is decoupled from its longitudinal size, making the thermodynamic limit possible; (ii) for very large width, the behaviour off a single wall can be studied; (iii) we can use “anti-parallel” boundary conditions to force a domain wall and measure its excess energy. Our results confirm that amorphous boundary conditions are indeed a very useful new tool in the study of static properties of glass-forming liquids, but also raise some warning about the fact that not all correlation functions that can be calculated in this framework give the same qualitative results.
publishDate 2013
dc.date.none.fl_str_mv 2013-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/5314
Gradenigo, Giacomo; Trozzo, Roberto; Cavagna, Andrea; Grigera, Tomas Sebastian; Verrocchio, Paolo; Static correlation functions and domain walls in glass-forming liquids: The case of a sandwich geometry; American Institute of Physics; Journal of Chemical Physics; 138; 12; 3-2013; 12A509-12A509
0021-9606
url http://hdl.handle.net/11336/5314
identifier_str_mv Gradenigo, Giacomo; Trozzo, Roberto; Cavagna, Andrea; Grigera, Tomas Sebastian; Verrocchio, Paolo; Static correlation functions and domain walls in glass-forming liquids: The case of a sandwich geometry; American Institute of Physics; Journal of Chemical Physics; 138; 12; 3-2013; 12A509-12A509
0021-9606
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/arxiv/1209.5954v1
info:eu-repo/semantics/altIdentifier/doi/
info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1209.5954v1
info:eu-repo/semantics/altIdentifier/url/http://scitation.aip.org/content/aip/journal/jcp/138/12/10.1063/1.4771973
info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4771973
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute of Physics
publisher.none.fl_str_mv American Institute of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613950475337728
score 13.070432