SOCH. An ML-based pipeline for PET automatic segmentation by heuristic algorithms means
- Autores
- Scarinci, Ignacio Emanuel; Valente, Mauro Andres; Pérez, Pedro Antonio
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Nowadays, nuclear medicine procedures have become a standard for several pathologies, both for diagnosis and therapeutic purposes. Also, regarding therapeutic applications, the demand for novel techniques and new radioisotopes is increasing worldwide. Due to the high dose rates involved in therapy procedures, this aspect requires significant efforts related to the development of more accurate methods and protocols for individualized patient dosimetry estimations. New theranostic procedures allowing joint diagnosis/treatment implementation proves to be suitable for image-guided dosimetry. Therefore, appropriate image segmentation becomes a key issue for tissues/organs identification. Implementation of machine learning models for digital image processing is a promising opportunity to complement expert clinical analysis. This work presents SOCH, an original machine learning-based pipeline capable of PET/CT unsupervised automatic segmentation by heuristic algorithms means using clustering and machine learning techniques. Obtained results suggested, preliminary, that pipeline flows based on K-Means and HDBSCAN algorithms are capable of PET/CT image segmentation, proving to be a promising tool to assist expert clinicians in daily procedures.
Fil: Scarinci, Ignacio Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática. Astronomía, Física y Computación. Laboratorio de Investigación e Instrumentación en Física Aplicada a La Medicina e Imágenes por Rayos X (LIIFAMIRx); Argentina
Fil: Valente, Mauro Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática. Astronomía, Física y Computación. Laboratorio de Investigación e Instrumentación en Física Aplicada a La Medicina e Imágenes por Rayos X (LIIFAMIRx); Argentina. Universidad de La Frontera; Chile
Fil: Pérez, Pedro Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba; Facultad de Matemática, Astronomía, Física y Computación; Laboratorio de Investigación e Instrumentación en Física Aplicada a La Medicina e Imágenes por Rayos X (LIIFAMIRx); Argentina - Materia
-
HEURISTIC ALGORITHMS
MACHINE LEARNING
PET/CT IMAGING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/147133
Ver los metadatos del registro completo
id |
CONICETDig_5b64d9198dd6b9ba6f018cdffa3a957c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/147133 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
SOCH. An ML-based pipeline for PET automatic segmentation by heuristic algorithms meansScarinci, Ignacio EmanuelValente, Mauro AndresPérez, Pedro AntonioHEURISTIC ALGORITHMSMACHINE LEARNINGPET/CT IMAGINGhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Nowadays, nuclear medicine procedures have become a standard for several pathologies, both for diagnosis and therapeutic purposes. Also, regarding therapeutic applications, the demand for novel techniques and new radioisotopes is increasing worldwide. Due to the high dose rates involved in therapy procedures, this aspect requires significant efforts related to the development of more accurate methods and protocols for individualized patient dosimetry estimations. New theranostic procedures allowing joint diagnosis/treatment implementation proves to be suitable for image-guided dosimetry. Therefore, appropriate image segmentation becomes a key issue for tissues/organs identification. Implementation of machine learning models for digital image processing is a promising opportunity to complement expert clinical analysis. This work presents SOCH, an original machine learning-based pipeline capable of PET/CT unsupervised automatic segmentation by heuristic algorithms means using clustering and machine learning techniques. Obtained results suggested, preliminary, that pipeline flows based on K-Means and HDBSCAN algorithms are capable of PET/CT image segmentation, proving to be a promising tool to assist expert clinicians in daily procedures.Fil: Scarinci, Ignacio Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática. Astronomía, Física y Computación. Laboratorio de Investigación e Instrumentación en Física Aplicada a La Medicina e Imágenes por Rayos X (LIIFAMIRx); ArgentinaFil: Valente, Mauro Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática. Astronomía, Física y Computación. Laboratorio de Investigación e Instrumentación en Física Aplicada a La Medicina e Imágenes por Rayos X (LIIFAMIRx); Argentina. Universidad de La Frontera; ChileFil: Pérez, Pedro Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba; Facultad de Matemática, Astronomía, Física y Computación; Laboratorio de Investigación e Instrumentación en Física Aplicada a La Medicina e Imágenes por Rayos X (LIIFAMIRx); ArgentinaElsevier Ltd2020-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/147133Scarinci, Ignacio Emanuel; Valente, Mauro Andres; Pérez, Pedro Antonio; SOCH. An ML-based pipeline for PET automatic segmentation by heuristic algorithms means; Elsevier Ltd; Informatics in Medicine Unlocked; 21; 1-2020; 1-92352-9148CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2352914820306328info:eu-repo/semantics/altIdentifier/doi/10.1016/j.imu.2020.100481info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:14:16Zoai:ri.conicet.gov.ar:11336/147133instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:14:16.882CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
SOCH. An ML-based pipeline for PET automatic segmentation by heuristic algorithms means |
title |
SOCH. An ML-based pipeline for PET automatic segmentation by heuristic algorithms means |
spellingShingle |
SOCH. An ML-based pipeline for PET automatic segmentation by heuristic algorithms means Scarinci, Ignacio Emanuel HEURISTIC ALGORITHMS MACHINE LEARNING PET/CT IMAGING |
title_short |
SOCH. An ML-based pipeline for PET automatic segmentation by heuristic algorithms means |
title_full |
SOCH. An ML-based pipeline for PET automatic segmentation by heuristic algorithms means |
title_fullStr |
SOCH. An ML-based pipeline for PET automatic segmentation by heuristic algorithms means |
title_full_unstemmed |
SOCH. An ML-based pipeline for PET automatic segmentation by heuristic algorithms means |
title_sort |
SOCH. An ML-based pipeline for PET automatic segmentation by heuristic algorithms means |
dc.creator.none.fl_str_mv |
Scarinci, Ignacio Emanuel Valente, Mauro Andres Pérez, Pedro Antonio |
author |
Scarinci, Ignacio Emanuel |
author_facet |
Scarinci, Ignacio Emanuel Valente, Mauro Andres Pérez, Pedro Antonio |
author_role |
author |
author2 |
Valente, Mauro Andres Pérez, Pedro Antonio |
author2_role |
author author |
dc.subject.none.fl_str_mv |
HEURISTIC ALGORITHMS MACHINE LEARNING PET/CT IMAGING |
topic |
HEURISTIC ALGORITHMS MACHINE LEARNING PET/CT IMAGING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Nowadays, nuclear medicine procedures have become a standard for several pathologies, both for diagnosis and therapeutic purposes. Also, regarding therapeutic applications, the demand for novel techniques and new radioisotopes is increasing worldwide. Due to the high dose rates involved in therapy procedures, this aspect requires significant efforts related to the development of more accurate methods and protocols for individualized patient dosimetry estimations. New theranostic procedures allowing joint diagnosis/treatment implementation proves to be suitable for image-guided dosimetry. Therefore, appropriate image segmentation becomes a key issue for tissues/organs identification. Implementation of machine learning models for digital image processing is a promising opportunity to complement expert clinical analysis. This work presents SOCH, an original machine learning-based pipeline capable of PET/CT unsupervised automatic segmentation by heuristic algorithms means using clustering and machine learning techniques. Obtained results suggested, preliminary, that pipeline flows based on K-Means and HDBSCAN algorithms are capable of PET/CT image segmentation, proving to be a promising tool to assist expert clinicians in daily procedures. Fil: Scarinci, Ignacio Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática. Astronomía, Física y Computación. Laboratorio de Investigación e Instrumentación en Física Aplicada a La Medicina e Imágenes por Rayos X (LIIFAMIRx); Argentina Fil: Valente, Mauro Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática. Astronomía, Física y Computación. Laboratorio de Investigación e Instrumentación en Física Aplicada a La Medicina e Imágenes por Rayos X (LIIFAMIRx); Argentina. Universidad de La Frontera; Chile Fil: Pérez, Pedro Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba; Facultad de Matemática, Astronomía, Física y Computación; Laboratorio de Investigación e Instrumentación en Física Aplicada a La Medicina e Imágenes por Rayos X (LIIFAMIRx); Argentina |
description |
Nowadays, nuclear medicine procedures have become a standard for several pathologies, both for diagnosis and therapeutic purposes. Also, regarding therapeutic applications, the demand for novel techniques and new radioisotopes is increasing worldwide. Due to the high dose rates involved in therapy procedures, this aspect requires significant efforts related to the development of more accurate methods and protocols for individualized patient dosimetry estimations. New theranostic procedures allowing joint diagnosis/treatment implementation proves to be suitable for image-guided dosimetry. Therefore, appropriate image segmentation becomes a key issue for tissues/organs identification. Implementation of machine learning models for digital image processing is a promising opportunity to complement expert clinical analysis. This work presents SOCH, an original machine learning-based pipeline capable of PET/CT unsupervised automatic segmentation by heuristic algorithms means using clustering and machine learning techniques. Obtained results suggested, preliminary, that pipeline flows based on K-Means and HDBSCAN algorithms are capable of PET/CT image segmentation, proving to be a promising tool to assist expert clinicians in daily procedures. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/147133 Scarinci, Ignacio Emanuel; Valente, Mauro Andres; Pérez, Pedro Antonio; SOCH. An ML-based pipeline for PET automatic segmentation by heuristic algorithms means; Elsevier Ltd; Informatics in Medicine Unlocked; 21; 1-2020; 1-9 2352-9148 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/147133 |
identifier_str_mv |
Scarinci, Ignacio Emanuel; Valente, Mauro Andres; Pérez, Pedro Antonio; SOCH. An ML-based pipeline for PET automatic segmentation by heuristic algorithms means; Elsevier Ltd; Informatics in Medicine Unlocked; 21; 1-2020; 1-9 2352-9148 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2352914820306328 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.imu.2020.100481 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Ltd |
publisher.none.fl_str_mv |
Elsevier Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980761571950592 |
score |
12.993085 |