Turbulent transport with intermittency: Expectation of a scalar concentration

Autores
Rast, M. P.; Pinton, J. F.; Mininni, Pablo Daniel
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Scalar transport by turbulent flows is best described in terms of Lagrangian parcel motions. Here we measure the Eulerian distance travel along Lagrangian trajectories in a simple point vortex flow to determine the probabilistic impulse response function for scalar transport in the absence of molecular diffusion. As expected, the mean squared Eulerian displacement scales ballistically at very short times and diffusively for very long times, with the displacement distribution at any given time approximating that of a random walk. However, significant deviations in the displacement distributions from Rayleigh are found. The probability of long distance transport is reduced over inertial range time scales due to spatial and temporal intermittency. This can be modeled as a series of trapping events with durations uniformly distributed below the Eulerian integral time scale. The probability of long distance transport is, on the other hand, enhanced beyond that of the random walk for both times shorter than the Lagrangian integral time and times longer than the Eulerian integral time. The very short-time enhancement reflects the underlying Lagrangian velocity distribution, while that at very long times results from the spatial and temporal variation of the flow at the largest scales. The probabilistic impulse response function, and with it the expectation value of the scalar concentration at any point in space and time, can be modeled using only the evolution of the lowest spatial wave number modes (the mean and the lowest harmonic) and an eddy based constrained random walk that captures the essential velocity phase relations associated with advection by vortex motions. Preliminary examination of Lagrangian tracers in three-dimensional homogeneous isotropic turbulence suggests that transport in that setting can be similarly modeled.
Fil: Rast, M. P.. State University of Colorado Boulder; Estados Unidos
Fil: Pinton, J. F.. Centre National de la Recherche Scientifique; Francia
Fil: Mininni, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Materia
Diffusion
Particles
Turbulence
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/47657

id CONICETDig_5af8e5375443d2fff36d3e9e15557c9c
oai_identifier_str oai:ri.conicet.gov.ar:11336/47657
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Turbulent transport with intermittency: Expectation of a scalar concentrationRast, M. P.Pinton, J. F.Mininni, Pablo DanielDiffusionParticlesTurbulencehttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Scalar transport by turbulent flows is best described in terms of Lagrangian parcel motions. Here we measure the Eulerian distance travel along Lagrangian trajectories in a simple point vortex flow to determine the probabilistic impulse response function for scalar transport in the absence of molecular diffusion. As expected, the mean squared Eulerian displacement scales ballistically at very short times and diffusively for very long times, with the displacement distribution at any given time approximating that of a random walk. However, significant deviations in the displacement distributions from Rayleigh are found. The probability of long distance transport is reduced over inertial range time scales due to spatial and temporal intermittency. This can be modeled as a series of trapping events with durations uniformly distributed below the Eulerian integral time scale. The probability of long distance transport is, on the other hand, enhanced beyond that of the random walk for both times shorter than the Lagrangian integral time and times longer than the Eulerian integral time. The very short-time enhancement reflects the underlying Lagrangian velocity distribution, while that at very long times results from the spatial and temporal variation of the flow at the largest scales. The probabilistic impulse response function, and with it the expectation value of the scalar concentration at any point in space and time, can be modeled using only the evolution of the lowest spatial wave number modes (the mean and the lowest harmonic) and an eddy based constrained random walk that captures the essential velocity phase relations associated with advection by vortex motions. Preliminary examination of Lagrangian tracers in three-dimensional homogeneous isotropic turbulence suggests that transport in that setting can be similarly modeled.Fil: Rast, M. P.. State University of Colorado Boulder; Estados UnidosFil: Pinton, J. F.. Centre National de la Recherche Scientifique; FranciaFil: Mininni, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaAmerican Physical Society2016-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/47657Rast, M. P.; Pinton, J. F.; Mininni, Pablo Daniel; Turbulent transport with intermittency: Expectation of a scalar concentration; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 93; 4; 4-2016; 4312001-43120101539-3755CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://journals.aps.org/pre/abstract/10.1103/PhysRevE.93.043120info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.93.043120info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:19:11Zoai:ri.conicet.gov.ar:11336/47657instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:19:11.682CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Turbulent transport with intermittency: Expectation of a scalar concentration
title Turbulent transport with intermittency: Expectation of a scalar concentration
spellingShingle Turbulent transport with intermittency: Expectation of a scalar concentration
Rast, M. P.
Diffusion
Particles
Turbulence
title_short Turbulent transport with intermittency: Expectation of a scalar concentration
title_full Turbulent transport with intermittency: Expectation of a scalar concentration
title_fullStr Turbulent transport with intermittency: Expectation of a scalar concentration
title_full_unstemmed Turbulent transport with intermittency: Expectation of a scalar concentration
title_sort Turbulent transport with intermittency: Expectation of a scalar concentration
dc.creator.none.fl_str_mv Rast, M. P.
Pinton, J. F.
Mininni, Pablo Daniel
author Rast, M. P.
author_facet Rast, M. P.
Pinton, J. F.
Mininni, Pablo Daniel
author_role author
author2 Pinton, J. F.
Mininni, Pablo Daniel
author2_role author
author
dc.subject.none.fl_str_mv Diffusion
Particles
Turbulence
topic Diffusion
Particles
Turbulence
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Scalar transport by turbulent flows is best described in terms of Lagrangian parcel motions. Here we measure the Eulerian distance travel along Lagrangian trajectories in a simple point vortex flow to determine the probabilistic impulse response function for scalar transport in the absence of molecular diffusion. As expected, the mean squared Eulerian displacement scales ballistically at very short times and diffusively for very long times, with the displacement distribution at any given time approximating that of a random walk. However, significant deviations in the displacement distributions from Rayleigh are found. The probability of long distance transport is reduced over inertial range time scales due to spatial and temporal intermittency. This can be modeled as a series of trapping events with durations uniformly distributed below the Eulerian integral time scale. The probability of long distance transport is, on the other hand, enhanced beyond that of the random walk for both times shorter than the Lagrangian integral time and times longer than the Eulerian integral time. The very short-time enhancement reflects the underlying Lagrangian velocity distribution, while that at very long times results from the spatial and temporal variation of the flow at the largest scales. The probabilistic impulse response function, and with it the expectation value of the scalar concentration at any point in space and time, can be modeled using only the evolution of the lowest spatial wave number modes (the mean and the lowest harmonic) and an eddy based constrained random walk that captures the essential velocity phase relations associated with advection by vortex motions. Preliminary examination of Lagrangian tracers in three-dimensional homogeneous isotropic turbulence suggests that transport in that setting can be similarly modeled.
Fil: Rast, M. P.. State University of Colorado Boulder; Estados Unidos
Fil: Pinton, J. F.. Centre National de la Recherche Scientifique; Francia
Fil: Mininni, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
description Scalar transport by turbulent flows is best described in terms of Lagrangian parcel motions. Here we measure the Eulerian distance travel along Lagrangian trajectories in a simple point vortex flow to determine the probabilistic impulse response function for scalar transport in the absence of molecular diffusion. As expected, the mean squared Eulerian displacement scales ballistically at very short times and diffusively for very long times, with the displacement distribution at any given time approximating that of a random walk. However, significant deviations in the displacement distributions from Rayleigh are found. The probability of long distance transport is reduced over inertial range time scales due to spatial and temporal intermittency. This can be modeled as a series of trapping events with durations uniformly distributed below the Eulerian integral time scale. The probability of long distance transport is, on the other hand, enhanced beyond that of the random walk for both times shorter than the Lagrangian integral time and times longer than the Eulerian integral time. The very short-time enhancement reflects the underlying Lagrangian velocity distribution, while that at very long times results from the spatial and temporal variation of the flow at the largest scales. The probabilistic impulse response function, and with it the expectation value of the scalar concentration at any point in space and time, can be modeled using only the evolution of the lowest spatial wave number modes (the mean and the lowest harmonic) and an eddy based constrained random walk that captures the essential velocity phase relations associated with advection by vortex motions. Preliminary examination of Lagrangian tracers in three-dimensional homogeneous isotropic turbulence suggests that transport in that setting can be similarly modeled.
publishDate 2016
dc.date.none.fl_str_mv 2016-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/47657
Rast, M. P.; Pinton, J. F.; Mininni, Pablo Daniel; Turbulent transport with intermittency: Expectation of a scalar concentration; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 93; 4; 4-2016; 4312001-4312010
1539-3755
CONICET Digital
CONICET
url http://hdl.handle.net/11336/47657
identifier_str_mv Rast, M. P.; Pinton, J. F.; Mininni, Pablo Daniel; Turbulent transport with intermittency: Expectation of a scalar concentration; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 93; 4; 4-2016; 4312001-4312010
1539-3755
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://journals.aps.org/pre/abstract/10.1103/PhysRevE.93.043120
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.93.043120
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083340929597440
score 13.22299