Intermittency in the isotropic component of helical and nonhelical turbulent flows

Autores
Martin, Luis Nicolas; Mininni, Pablo Daniel
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We analyze the isotropic component of turbulent flows spanning a broad range or Reynolds numbers. The aim is to identify scaling laws and their Reynolds number dependence in flows under different mechanical forcings. To this end, we applied an SO(3) decomposition to data stemming from direct numerical simulations with spatial resolutions ranging from 643 to 10243 grid points, and studied the scaling of high order moments of the velocity field. The study was carried out for two different flows obtained forcing the system with a Taylor-Green vortex or the Arn'old-Beltrami-Childress flow. Our results indicate that helicity has no significant impact on the scaling exponents as obtained from the generalized structure functions. Intermittency effects increase with the Reynolds number in the range of parameters studied, and in some cases are larger than what can be expected from several models of intermittency in the literature. The observed dependence of intermittency with the Reynolds number decreases if extended self-similarity is used to estimate the exponents. © 2010 The American Physical Society.
Fil: Martin, Luis Nicolas. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Mininni, Pablo Daniel. National Center for Atmospheric Research; Estados Unidos. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Materia
Direct Numerical Simulations
High-Reynolds-Number Turbulence
Isotropic Turbulence
Homogeneous Turbulence
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/59099

id CONICETDig_1d1fa6e148d6a3030d5357569e417f99
oai_identifier_str oai:ri.conicet.gov.ar:11336/59099
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Intermittency in the isotropic component of helical and nonhelical turbulent flowsMartin, Luis NicolasMininni, Pablo DanielDirect Numerical SimulationsHigh-Reynolds-Number TurbulenceIsotropic TurbulenceHomogeneous Turbulencehttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We analyze the isotropic component of turbulent flows spanning a broad range or Reynolds numbers. The aim is to identify scaling laws and their Reynolds number dependence in flows under different mechanical forcings. To this end, we applied an SO(3) decomposition to data stemming from direct numerical simulations with spatial resolutions ranging from 643 to 10243 grid points, and studied the scaling of high order moments of the velocity field. The study was carried out for two different flows obtained forcing the system with a Taylor-Green vortex or the Arn'old-Beltrami-Childress flow. Our results indicate that helicity has no significant impact on the scaling exponents as obtained from the generalized structure functions. Intermittency effects increase with the Reynolds number in the range of parameters studied, and in some cases are larger than what can be expected from several models of intermittency in the literature. The observed dependence of intermittency with the Reynolds number decreases if extended self-similarity is used to estimate the exponents. © 2010 The American Physical Society.Fil: Martin, Luis Nicolas. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Mininni, Pablo Daniel. National Center for Atmospheric Research; Estados Unidos. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaAmerican Physical Society2010-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/59099Martin, Luis Nicolas; Mininni, Pablo Daniel; Intermittency in the isotropic component of helical and nonhelical turbulent flows; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 81; 1; 1-2010; 163101-1631091539-3755CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.81.016310info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:41:48Zoai:ri.conicet.gov.ar:11336/59099instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:41:49.188CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Intermittency in the isotropic component of helical and nonhelical turbulent flows
title Intermittency in the isotropic component of helical and nonhelical turbulent flows
spellingShingle Intermittency in the isotropic component of helical and nonhelical turbulent flows
Martin, Luis Nicolas
Direct Numerical Simulations
High-Reynolds-Number Turbulence
Isotropic Turbulence
Homogeneous Turbulence
title_short Intermittency in the isotropic component of helical and nonhelical turbulent flows
title_full Intermittency in the isotropic component of helical and nonhelical turbulent flows
title_fullStr Intermittency in the isotropic component of helical and nonhelical turbulent flows
title_full_unstemmed Intermittency in the isotropic component of helical and nonhelical turbulent flows
title_sort Intermittency in the isotropic component of helical and nonhelical turbulent flows
dc.creator.none.fl_str_mv Martin, Luis Nicolas
Mininni, Pablo Daniel
author Martin, Luis Nicolas
author_facet Martin, Luis Nicolas
Mininni, Pablo Daniel
author_role author
author2 Mininni, Pablo Daniel
author2_role author
dc.subject.none.fl_str_mv Direct Numerical Simulations
High-Reynolds-Number Turbulence
Isotropic Turbulence
Homogeneous Turbulence
topic Direct Numerical Simulations
High-Reynolds-Number Turbulence
Isotropic Turbulence
Homogeneous Turbulence
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We analyze the isotropic component of turbulent flows spanning a broad range or Reynolds numbers. The aim is to identify scaling laws and their Reynolds number dependence in flows under different mechanical forcings. To this end, we applied an SO(3) decomposition to data stemming from direct numerical simulations with spatial resolutions ranging from 643 to 10243 grid points, and studied the scaling of high order moments of the velocity field. The study was carried out for two different flows obtained forcing the system with a Taylor-Green vortex or the Arn'old-Beltrami-Childress flow. Our results indicate that helicity has no significant impact on the scaling exponents as obtained from the generalized structure functions. Intermittency effects increase with the Reynolds number in the range of parameters studied, and in some cases are larger than what can be expected from several models of intermittency in the literature. The observed dependence of intermittency with the Reynolds number decreases if extended self-similarity is used to estimate the exponents. © 2010 The American Physical Society.
Fil: Martin, Luis Nicolas. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Mininni, Pablo Daniel. National Center for Atmospheric Research; Estados Unidos. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
description We analyze the isotropic component of turbulent flows spanning a broad range or Reynolds numbers. The aim is to identify scaling laws and their Reynolds number dependence in flows under different mechanical forcings. To this end, we applied an SO(3) decomposition to data stemming from direct numerical simulations with spatial resolutions ranging from 643 to 10243 grid points, and studied the scaling of high order moments of the velocity field. The study was carried out for two different flows obtained forcing the system with a Taylor-Green vortex or the Arn'old-Beltrami-Childress flow. Our results indicate that helicity has no significant impact on the scaling exponents as obtained from the generalized structure functions. Intermittency effects increase with the Reynolds number in the range of parameters studied, and in some cases are larger than what can be expected from several models of intermittency in the literature. The observed dependence of intermittency with the Reynolds number decreases if extended self-similarity is used to estimate the exponents. © 2010 The American Physical Society.
publishDate 2010
dc.date.none.fl_str_mv 2010-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/59099
Martin, Luis Nicolas; Mininni, Pablo Daniel; Intermittency in the isotropic component of helical and nonhelical turbulent flows; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 81; 1; 1-2010; 163101-163109
1539-3755
CONICET Digital
CONICET
url http://hdl.handle.net/11336/59099
identifier_str_mv Martin, Luis Nicolas; Mininni, Pablo Daniel; Intermittency in the isotropic component of helical and nonhelical turbulent flows; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 81; 1; 1-2010; 163101-163109
1539-3755
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.81.016310
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082917058478080
score 13.22299