Detection of glaciers displacement time-series using SAR
- Autores
- Euillades, Pablo Andrés; Euillades, Pablo Andrés; Riveros, Natalia Cecilia; Masiokas, Mariano Hugo; Ruiz, Lucas Ernesto; Pitte, Pedro Miguel; Elefante, Stefano; Casu, Francesco; Balbarani, Sebastian
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Glaciers are sensitive indicators of climate change. Particularly, glacier surface velocity constitutes a key parameter for estimating ice volume variations as response to global warming and its incidence in sea level rise. Several methodologies based in remotely sensed data have been employed for estimating ice velocity fields. They are mostly based in cross-correlating pairs of images in order to track features displacement between two dates. High ice flux velocity, which can reach more than 1 km/year, constitute a challenge for the existing methodologies, in practice limiting to a few days the time span between useful data. In this work we present an extension of the known Pixel Offset – Small Baseline Subsets (PO-SBAS) technique, that profit a set of successive Synthetic Aperture Radar (SAR) scenes for computing displacement time series and ice velocity fields. The algorithm is guided by a preliminary ice velocity model estimated from the data itself, which significantly improves the results reliability and reduces the overall computational cost. Furthermore, it implements a processing scheme that considers the displacement estimations (PO) quality in order to decide which pixels are included in the time-series inversion. The proposed technique is applied to 22 COSMO-Skymed SAR images of Viedma Glacier (Southern Patagonian Icefield, Argentina) spanning roughly a year. The results obtained are robust and make profit of the whole available dataset. Resulting mean velocity field and displacement time series show the algorithm suitability for retrieving and characterizing complex ice motion patterns.
Fil: Euillades, Pablo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina
Fil: Euillades, Pablo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina
Fil: Riveros, Natalia Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina
Fil: Masiokas, Mariano Hugo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina
Fil: Ruiz, Lucas Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina
Fil: Pitte, Pedro Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina
Fil: Elefante, Stefano. Istituto per il Rilevamento Elettromagnetico dell'Ambiente; Italia
Fil: Casu, Francesco. Istituto per il Rilevamento Elettromagnetico dell'Ambiente; Italia
Fil: Balbarani, Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina - Materia
-
Glaciers
Ice Surface Velocity
Pixel Offset &Ndash; Small Baseline Subsets (Po-Sbas)
Synthetic Aperture Radar (Sar)
Time-Series
Viedma Glacier - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/59687
Ver los metadatos del registro completo
id |
CONICETDig_5ad962583ae0fbae15b74f7e0de2c53a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/59687 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Detection of glaciers displacement time-series using SAREuillades, Pablo AndrésEuillades, Pablo AndrésRiveros, Natalia CeciliaMasiokas, Mariano HugoRuiz, Lucas ErnestoPitte, Pedro MiguelElefante, StefanoCasu, FrancescoBalbarani, SebastianGlaciersIce Surface VelocityPixel Offset &Ndash; Small Baseline Subsets (Po-Sbas)Synthetic Aperture Radar (Sar)Time-SeriesViedma Glacierhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Glaciers are sensitive indicators of climate change. Particularly, glacier surface velocity constitutes a key parameter for estimating ice volume variations as response to global warming and its incidence in sea level rise. Several methodologies based in remotely sensed data have been employed for estimating ice velocity fields. They are mostly based in cross-correlating pairs of images in order to track features displacement between two dates. High ice flux velocity, which can reach more than 1 km/year, constitute a challenge for the existing methodologies, in practice limiting to a few days the time span between useful data. In this work we present an extension of the known Pixel Offset – Small Baseline Subsets (PO-SBAS) technique, that profit a set of successive Synthetic Aperture Radar (SAR) scenes for computing displacement time series and ice velocity fields. The algorithm is guided by a preliminary ice velocity model estimated from the data itself, which significantly improves the results reliability and reduces the overall computational cost. Furthermore, it implements a processing scheme that considers the displacement estimations (PO) quality in order to decide which pixels are included in the time-series inversion. The proposed technique is applied to 22 COSMO-Skymed SAR images of Viedma Glacier (Southern Patagonian Icefield, Argentina) spanning roughly a year. The results obtained are robust and make profit of the whole available dataset. Resulting mean velocity field and displacement time series show the algorithm suitability for retrieving and characterizing complex ice motion patterns.Fil: Euillades, Pablo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ingeniería; ArgentinaFil: Euillades, Pablo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ingeniería; ArgentinaFil: Riveros, Natalia Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ingeniería; ArgentinaFil: Masiokas, Mariano Hugo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Ruiz, Lucas Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Pitte, Pedro Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Elefante, Stefano. Istituto per il Rilevamento Elettromagnetico dell'Ambiente; ItaliaFil: Casu, Francesco. Istituto per il Rilevamento Elettromagnetico dell'Ambiente; ItaliaFil: Balbarani, Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ingeniería; ArgentinaElsevier Science Inc2016-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/59687Euillades, Pablo Andrés; Euillades, Pablo Andrés; Riveros, Natalia Cecilia; Masiokas, Mariano Hugo; Ruiz, Lucas Ernesto; et al.; Detection of glaciers displacement time-series using SAR; Elsevier Science Inc; Remote Sensing of Environment; 184; 10-2016; 188-1980034-4257CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.rse.2016.07.003info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0034425716302607info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:23:48Zoai:ri.conicet.gov.ar:11336/59687instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:23:48.791CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Detection of glaciers displacement time-series using SAR |
title |
Detection of glaciers displacement time-series using SAR |
spellingShingle |
Detection of glaciers displacement time-series using SAR Euillades, Pablo Andrés Glaciers Ice Surface Velocity Pixel Offset &Ndash; Small Baseline Subsets (Po-Sbas) Synthetic Aperture Radar (Sar) Time-Series Viedma Glacier |
title_short |
Detection of glaciers displacement time-series using SAR |
title_full |
Detection of glaciers displacement time-series using SAR |
title_fullStr |
Detection of glaciers displacement time-series using SAR |
title_full_unstemmed |
Detection of glaciers displacement time-series using SAR |
title_sort |
Detection of glaciers displacement time-series using SAR |
dc.creator.none.fl_str_mv |
Euillades, Pablo Andrés Euillades, Pablo Andrés Riveros, Natalia Cecilia Masiokas, Mariano Hugo Ruiz, Lucas Ernesto Pitte, Pedro Miguel Elefante, Stefano Casu, Francesco Balbarani, Sebastian |
author |
Euillades, Pablo Andrés |
author_facet |
Euillades, Pablo Andrés Riveros, Natalia Cecilia Masiokas, Mariano Hugo Ruiz, Lucas Ernesto Pitte, Pedro Miguel Elefante, Stefano Casu, Francesco Balbarani, Sebastian |
author_role |
author |
author2 |
Riveros, Natalia Cecilia Masiokas, Mariano Hugo Ruiz, Lucas Ernesto Pitte, Pedro Miguel Elefante, Stefano Casu, Francesco Balbarani, Sebastian |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
Glaciers Ice Surface Velocity Pixel Offset &Ndash; Small Baseline Subsets (Po-Sbas) Synthetic Aperture Radar (Sar) Time-Series Viedma Glacier |
topic |
Glaciers Ice Surface Velocity Pixel Offset &Ndash; Small Baseline Subsets (Po-Sbas) Synthetic Aperture Radar (Sar) Time-Series Viedma Glacier |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Glaciers are sensitive indicators of climate change. Particularly, glacier surface velocity constitutes a key parameter for estimating ice volume variations as response to global warming and its incidence in sea level rise. Several methodologies based in remotely sensed data have been employed for estimating ice velocity fields. They are mostly based in cross-correlating pairs of images in order to track features displacement between two dates. High ice flux velocity, which can reach more than 1 km/year, constitute a challenge for the existing methodologies, in practice limiting to a few days the time span between useful data. In this work we present an extension of the known Pixel Offset – Small Baseline Subsets (PO-SBAS) technique, that profit a set of successive Synthetic Aperture Radar (SAR) scenes for computing displacement time series and ice velocity fields. The algorithm is guided by a preliminary ice velocity model estimated from the data itself, which significantly improves the results reliability and reduces the overall computational cost. Furthermore, it implements a processing scheme that considers the displacement estimations (PO) quality in order to decide which pixels are included in the time-series inversion. The proposed technique is applied to 22 COSMO-Skymed SAR images of Viedma Glacier (Southern Patagonian Icefield, Argentina) spanning roughly a year. The results obtained are robust and make profit of the whole available dataset. Resulting mean velocity field and displacement time series show the algorithm suitability for retrieving and characterizing complex ice motion patterns. Fil: Euillades, Pablo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina Fil: Euillades, Pablo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina Fil: Riveros, Natalia Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina Fil: Masiokas, Mariano Hugo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina Fil: Ruiz, Lucas Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina Fil: Pitte, Pedro Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina Fil: Elefante, Stefano. Istituto per il Rilevamento Elettromagnetico dell'Ambiente; Italia Fil: Casu, Francesco. Istituto per il Rilevamento Elettromagnetico dell'Ambiente; Italia Fil: Balbarani, Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina |
description |
Glaciers are sensitive indicators of climate change. Particularly, glacier surface velocity constitutes a key parameter for estimating ice volume variations as response to global warming and its incidence in sea level rise. Several methodologies based in remotely sensed data have been employed for estimating ice velocity fields. They are mostly based in cross-correlating pairs of images in order to track features displacement between two dates. High ice flux velocity, which can reach more than 1 km/year, constitute a challenge for the existing methodologies, in practice limiting to a few days the time span between useful data. In this work we present an extension of the known Pixel Offset – Small Baseline Subsets (PO-SBAS) technique, that profit a set of successive Synthetic Aperture Radar (SAR) scenes for computing displacement time series and ice velocity fields. The algorithm is guided by a preliminary ice velocity model estimated from the data itself, which significantly improves the results reliability and reduces the overall computational cost. Furthermore, it implements a processing scheme that considers the displacement estimations (PO) quality in order to decide which pixels are included in the time-series inversion. The proposed technique is applied to 22 COSMO-Skymed SAR images of Viedma Glacier (Southern Patagonian Icefield, Argentina) spanning roughly a year. The results obtained are robust and make profit of the whole available dataset. Resulting mean velocity field and displacement time series show the algorithm suitability for retrieving and characterizing complex ice motion patterns. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/59687 Euillades, Pablo Andrés; Euillades, Pablo Andrés; Riveros, Natalia Cecilia; Masiokas, Mariano Hugo; Ruiz, Lucas Ernesto; et al.; Detection of glaciers displacement time-series using SAR; Elsevier Science Inc; Remote Sensing of Environment; 184; 10-2016; 188-198 0034-4257 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/59687 |
identifier_str_mv |
Euillades, Pablo Andrés; Euillades, Pablo Andrés; Riveros, Natalia Cecilia; Masiokas, Mariano Hugo; Ruiz, Lucas Ernesto; et al.; Detection of glaciers displacement time-series using SAR; Elsevier Science Inc; Remote Sensing of Environment; 184; 10-2016; 188-198 0034-4257 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.rse.2016.07.003 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0034425716302607 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science Inc |
publisher.none.fl_str_mv |
Elsevier Science Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082653125607424 |
score |
13.22299 |