Optimization model for the operational-level scheduling of multi-source pipelines with parallel batch injections
- Autores
- Cafaro, Vanina; Cafaro, Diego Carlos; Mendez, Carlos Alberto; Cerda, Jaime
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Pipeline networks are the shippers' first choice for carrying large volumes of refined petroleum productsfrom oil refineries to distant distribution terminals. Optimization approaches for solving the pipelinescheduling problem proceed in two hierarchical stages: the aggregate and the detailed planning steps.The aggregate plan determines the batch sizes, the sequence of batch injections, and the allocation ofbatches to customers. The subsequent stage refines the aggregate plan to find the detailed schedule ofbatch input and output operations. This paper presents a mixed-integer linear programming (MILP) formulationfor the detailed scheduling of multi-source pipelines that accounts for parallel batch injectionsand simultaneous product deliveries to multiple terminals. It overcomes a critical drawback of previousmodels that assume single source configurations. Modeling multi-source pipeline networks is a greatchallenge, requiring a completely revised approach. The new model finds cost-effective solutions withremarkable efficiency.
Fil: Cafaro, Vanina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina
Fil: Cafaro, Diego Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina
Fil: Mendez, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina
Fil: Cerda, Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina - Materia
-
Pipeline
Scheduling
Milp Model - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/9907
Ver los metadatos del registro completo
id |
CONICETDig_39c30c83f04dbb4f77c299faab2e9853 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/9907 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Optimization model for the operational-level scheduling of multi-source pipelines with parallel batch injectionsCafaro, VaninaCafaro, Diego CarlosMendez, Carlos AlbertoCerda, JaimePipelineSchedulingMilp Modelhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Pipeline networks are the shippers' first choice for carrying large volumes of refined petroleum productsfrom oil refineries to distant distribution terminals. Optimization approaches for solving the pipelinescheduling problem proceed in two hierarchical stages: the aggregate and the detailed planning steps.The aggregate plan determines the batch sizes, the sequence of batch injections, and the allocation ofbatches to customers. The subsequent stage refines the aggregate plan to find the detailed schedule ofbatch input and output operations. This paper presents a mixed-integer linear programming (MILP) formulationfor the detailed scheduling of multi-source pipelines that accounts for parallel batch injectionsand simultaneous product deliveries to multiple terminals. It overcomes a critical drawback of previousmodels that assume single source configurations. Modeling multi-source pipeline networks is a greatchallenge, requiring a completely revised approach. The new model finds cost-effective solutions withremarkable efficiency.Fil: Cafaro, Vanina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); ArgentinaFil: Cafaro, Diego Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); ArgentinaFil: Mendez, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); ArgentinaFil: Cerda, Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); ArgentinaElsevier2015-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/9907Cafaro, Vanina; Cafaro, Diego Carlos; Mendez, Carlos Alberto; Cerda, Jaime; Optimization model for the operational-level scheduling of multi-source pipelines with parallel batch injections; Elsevier; Computers & Industrial Engineering; 88; 8-2015; 395-4090360-8352enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.cie.2015.07.022info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0360835215003253info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:06:24Zoai:ri.conicet.gov.ar:11336/9907instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:06:24.503CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Optimization model for the operational-level scheduling of multi-source pipelines with parallel batch injections |
title |
Optimization model for the operational-level scheduling of multi-source pipelines with parallel batch injections |
spellingShingle |
Optimization model for the operational-level scheduling of multi-source pipelines with parallel batch injections Cafaro, Vanina Pipeline Scheduling Milp Model |
title_short |
Optimization model for the operational-level scheduling of multi-source pipelines with parallel batch injections |
title_full |
Optimization model for the operational-level scheduling of multi-source pipelines with parallel batch injections |
title_fullStr |
Optimization model for the operational-level scheduling of multi-source pipelines with parallel batch injections |
title_full_unstemmed |
Optimization model for the operational-level scheduling of multi-source pipelines with parallel batch injections |
title_sort |
Optimization model for the operational-level scheduling of multi-source pipelines with parallel batch injections |
dc.creator.none.fl_str_mv |
Cafaro, Vanina Cafaro, Diego Carlos Mendez, Carlos Alberto Cerda, Jaime |
author |
Cafaro, Vanina |
author_facet |
Cafaro, Vanina Cafaro, Diego Carlos Mendez, Carlos Alberto Cerda, Jaime |
author_role |
author |
author2 |
Cafaro, Diego Carlos Mendez, Carlos Alberto Cerda, Jaime |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Pipeline Scheduling Milp Model |
topic |
Pipeline Scheduling Milp Model |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Pipeline networks are the shippers' first choice for carrying large volumes of refined petroleum productsfrom oil refineries to distant distribution terminals. Optimization approaches for solving the pipelinescheduling problem proceed in two hierarchical stages: the aggregate and the detailed planning steps.The aggregate plan determines the batch sizes, the sequence of batch injections, and the allocation ofbatches to customers. The subsequent stage refines the aggregate plan to find the detailed schedule ofbatch input and output operations. This paper presents a mixed-integer linear programming (MILP) formulationfor the detailed scheduling of multi-source pipelines that accounts for parallel batch injectionsand simultaneous product deliveries to multiple terminals. It overcomes a critical drawback of previousmodels that assume single source configurations. Modeling multi-source pipeline networks is a greatchallenge, requiring a completely revised approach. The new model finds cost-effective solutions withremarkable efficiency. Fil: Cafaro, Vanina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina Fil: Cafaro, Diego Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina Fil: Mendez, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina Fil: Cerda, Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina |
description |
Pipeline networks are the shippers' first choice for carrying large volumes of refined petroleum productsfrom oil refineries to distant distribution terminals. Optimization approaches for solving the pipelinescheduling problem proceed in two hierarchical stages: the aggregate and the detailed planning steps.The aggregate plan determines the batch sizes, the sequence of batch injections, and the allocation ofbatches to customers. The subsequent stage refines the aggregate plan to find the detailed schedule ofbatch input and output operations. This paper presents a mixed-integer linear programming (MILP) formulationfor the detailed scheduling of multi-source pipelines that accounts for parallel batch injectionsand simultaneous product deliveries to multiple terminals. It overcomes a critical drawback of previousmodels that assume single source configurations. Modeling multi-source pipeline networks is a greatchallenge, requiring a completely revised approach. The new model finds cost-effective solutions withremarkable efficiency. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/9907 Cafaro, Vanina; Cafaro, Diego Carlos; Mendez, Carlos Alberto; Cerda, Jaime; Optimization model for the operational-level scheduling of multi-source pipelines with parallel batch injections; Elsevier; Computers & Industrial Engineering; 88; 8-2015; 395-409 0360-8352 |
url |
http://hdl.handle.net/11336/9907 |
identifier_str_mv |
Cafaro, Vanina; Cafaro, Diego Carlos; Mendez, Carlos Alberto; Cerda, Jaime; Optimization model for the operational-level scheduling of multi-source pipelines with parallel batch injections; Elsevier; Computers & Industrial Engineering; 88; 8-2015; 395-409 0360-8352 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cie.2015.07.022 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0360835215003253 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269957136580608 |
score |
13.13397 |