Old players with a newly defined function: Fra-1 and c-Fos support growth of human malignant breast tumors by activating membrane biogenesis at the cytoplasm

Autores
Motrich, Ruben Dario; Castro, Gonzalo Manuel; Caputto, Beatriz Leonor
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A shared characteristic of tumor cells is their exacerbated growth. Consequently, tumor cells demand high rates of phospholipid synthesis required for membrane biogenesis to support their growth. c-Fos, in addition to its AP-1 transcription factor activity, is the only protein known up to date that is capable of activating lipid synthesis in normal and brain tumor tissue. For this latter activity, c-Fos associates to the endoplasmic reticulum (ER) through its N-terminal domain and activates phospholipid synthesis, an event that requires it Basic Domain (BD) (aa 139-159). Fra-1, another member of the FOS family of proteins, is over-expressed in human breast cancer cells and its BD is highly homologous to that of c-Fos with two conservative substitutions in its basic amino acids. Consequently, herein we examined if Fra-1 and/or c-Fos participate in growth of breast cancer cells by activating phospholipid synthesis as found previously for c-Fos in brain tumors. We found both Fra-1 and c-Fos over-expressed in more than 95% of human ductal breast carcinoma biopsies examined contrasting with the very low or undetectable levels in normal tissue. Furthermore, both proteins associate to the ER and activate phospholipid synthesis in cultured MCF7 and MDA-MB231 breast cancer cells and in human breast cancer samples. Stripping tumor membranes of Fra-1 and c-Fos prior to assaying their lipid synthesis capacity in vitro results in nonactivated lipid synthesis levels that are restored to their initial activated state by addition of Fra-1 and/or c-Fos to the assays. In MDA-MB231 cells primed to proliferate, blocking Fra-1 and c-Fos with neutralizing antibodies blocks lipid-synthesis activation and cells do not proliferate. Taken together, these results disclose the cytoplasmic activity of Fra-1 and c-Fos as potential targets for controlling growth of breast carcinomas by decreasing the rate of membrane biogenesis required for growth.
Fil: Motrich, Ruben Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (p); Argentina
Fil: Castro, Gonzalo Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (p); Argentina
Fil: Caputto, Beatriz Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (p); Argentina
Materia
Breast Cancer
Phospholipids
Membrane Biogenesis
Tumour Cell Growth
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/2388

id CONICETDig_59c12a2ece5a877fb9ba94b95a03cb2b
oai_identifier_str oai:ri.conicet.gov.ar:11336/2388
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Old players with a newly defined function: Fra-1 and c-Fos support growth of human malignant breast tumors by activating membrane biogenesis at the cytoplasmMotrich, Ruben DarioCastro, Gonzalo ManuelCaputto, Beatriz LeonorBreast CancerPhospholipidsMembrane BiogenesisTumour Cell Growthhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1https://purl.org/becyt/ford/3.2https://purl.org/becyt/ford/3A shared characteristic of tumor cells is their exacerbated growth. Consequently, tumor cells demand high rates of phospholipid synthesis required for membrane biogenesis to support their growth. c-Fos, in addition to its AP-1 transcription factor activity, is the only protein known up to date that is capable of activating lipid synthesis in normal and brain tumor tissue. For this latter activity, c-Fos associates to the endoplasmic reticulum (ER) through its N-terminal domain and activates phospholipid synthesis, an event that requires it Basic Domain (BD) (aa 139-159). Fra-1, another member of the FOS family of proteins, is over-expressed in human breast cancer cells and its BD is highly homologous to that of c-Fos with two conservative substitutions in its basic amino acids. Consequently, herein we examined if Fra-1 and/or c-Fos participate in growth of breast cancer cells by activating phospholipid synthesis as found previously for c-Fos in brain tumors. We found both Fra-1 and c-Fos over-expressed in more than 95% of human ductal breast carcinoma biopsies examined contrasting with the very low or undetectable levels in normal tissue. Furthermore, both proteins associate to the ER and activate phospholipid synthesis in cultured MCF7 and MDA-MB231 breast cancer cells and in human breast cancer samples. Stripping tumor membranes of Fra-1 and c-Fos prior to assaying their lipid synthesis capacity in vitro results in nonactivated lipid synthesis levels that are restored to their initial activated state by addition of Fra-1 and/or c-Fos to the assays. In MDA-MB231 cells primed to proliferate, blocking Fra-1 and c-Fos with neutralizing antibodies blocks lipid-synthesis activation and cells do not proliferate. Taken together, these results disclose the cytoplasmic activity of Fra-1 and c-Fos as potential targets for controlling growth of breast carcinomas by decreasing the rate of membrane biogenesis required for growth.Fil: Motrich, Ruben Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (p); ArgentinaFil: Castro, Gonzalo Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (p); ArgentinaFil: Caputto, Beatriz Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (p); ArgentinaPublic Library of Science2013-01-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/2388Motrich, Ruben Dario; Castro, Gonzalo Manuel; Caputto, Beatriz Leonor; Old players with a newly defined function: Fra-1 and c-Fos support growth of human malignant breast tumors by activating membrane biogenesis at the cytoplasm; Public Library of Science; Plos One; 8; 1; 2-1-2013; 53211-53111932-6203enginfo:eu-repo/semantics/altIdentifier/doi/DOI:10.1371/journal.pone.0053211info:eu-repo/semantics/altIdentifier/url/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3534677/info:eu-repo/semantics/altIdentifier/url/http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0053211info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:12:15Zoai:ri.conicet.gov.ar:11336/2388instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:12:15.283CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Old players with a newly defined function: Fra-1 and c-Fos support growth of human malignant breast tumors by activating membrane biogenesis at the cytoplasm
title Old players with a newly defined function: Fra-1 and c-Fos support growth of human malignant breast tumors by activating membrane biogenesis at the cytoplasm
spellingShingle Old players with a newly defined function: Fra-1 and c-Fos support growth of human malignant breast tumors by activating membrane biogenesis at the cytoplasm
Motrich, Ruben Dario
Breast Cancer
Phospholipids
Membrane Biogenesis
Tumour Cell Growth
title_short Old players with a newly defined function: Fra-1 and c-Fos support growth of human malignant breast tumors by activating membrane biogenesis at the cytoplasm
title_full Old players with a newly defined function: Fra-1 and c-Fos support growth of human malignant breast tumors by activating membrane biogenesis at the cytoplasm
title_fullStr Old players with a newly defined function: Fra-1 and c-Fos support growth of human malignant breast tumors by activating membrane biogenesis at the cytoplasm
title_full_unstemmed Old players with a newly defined function: Fra-1 and c-Fos support growth of human malignant breast tumors by activating membrane biogenesis at the cytoplasm
title_sort Old players with a newly defined function: Fra-1 and c-Fos support growth of human malignant breast tumors by activating membrane biogenesis at the cytoplasm
dc.creator.none.fl_str_mv Motrich, Ruben Dario
Castro, Gonzalo Manuel
Caputto, Beatriz Leonor
author Motrich, Ruben Dario
author_facet Motrich, Ruben Dario
Castro, Gonzalo Manuel
Caputto, Beatriz Leonor
author_role author
author2 Castro, Gonzalo Manuel
Caputto, Beatriz Leonor
author2_role author
author
dc.subject.none.fl_str_mv Breast Cancer
Phospholipids
Membrane Biogenesis
Tumour Cell Growth
topic Breast Cancer
Phospholipids
Membrane Biogenesis
Tumour Cell Growth
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/3.2
https://purl.org/becyt/ford/3
dc.description.none.fl_txt_mv A shared characteristic of tumor cells is their exacerbated growth. Consequently, tumor cells demand high rates of phospholipid synthesis required for membrane biogenesis to support their growth. c-Fos, in addition to its AP-1 transcription factor activity, is the only protein known up to date that is capable of activating lipid synthesis in normal and brain tumor tissue. For this latter activity, c-Fos associates to the endoplasmic reticulum (ER) through its N-terminal domain and activates phospholipid synthesis, an event that requires it Basic Domain (BD) (aa 139-159). Fra-1, another member of the FOS family of proteins, is over-expressed in human breast cancer cells and its BD is highly homologous to that of c-Fos with two conservative substitutions in its basic amino acids. Consequently, herein we examined if Fra-1 and/or c-Fos participate in growth of breast cancer cells by activating phospholipid synthesis as found previously for c-Fos in brain tumors. We found both Fra-1 and c-Fos over-expressed in more than 95% of human ductal breast carcinoma biopsies examined contrasting with the very low or undetectable levels in normal tissue. Furthermore, both proteins associate to the ER and activate phospholipid synthesis in cultured MCF7 and MDA-MB231 breast cancer cells and in human breast cancer samples. Stripping tumor membranes of Fra-1 and c-Fos prior to assaying their lipid synthesis capacity in vitro results in nonactivated lipid synthesis levels that are restored to their initial activated state by addition of Fra-1 and/or c-Fos to the assays. In MDA-MB231 cells primed to proliferate, blocking Fra-1 and c-Fos with neutralizing antibodies blocks lipid-synthesis activation and cells do not proliferate. Taken together, these results disclose the cytoplasmic activity of Fra-1 and c-Fos as potential targets for controlling growth of breast carcinomas by decreasing the rate of membrane biogenesis required for growth.
Fil: Motrich, Ruben Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (p); Argentina
Fil: Castro, Gonzalo Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (p); Argentina
Fil: Caputto, Beatriz Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (p); Argentina
description A shared characteristic of tumor cells is their exacerbated growth. Consequently, tumor cells demand high rates of phospholipid synthesis required for membrane biogenesis to support their growth. c-Fos, in addition to its AP-1 transcription factor activity, is the only protein known up to date that is capable of activating lipid synthesis in normal and brain tumor tissue. For this latter activity, c-Fos associates to the endoplasmic reticulum (ER) through its N-terminal domain and activates phospholipid synthesis, an event that requires it Basic Domain (BD) (aa 139-159). Fra-1, another member of the FOS family of proteins, is over-expressed in human breast cancer cells and its BD is highly homologous to that of c-Fos with two conservative substitutions in its basic amino acids. Consequently, herein we examined if Fra-1 and/or c-Fos participate in growth of breast cancer cells by activating phospholipid synthesis as found previously for c-Fos in brain tumors. We found both Fra-1 and c-Fos over-expressed in more than 95% of human ductal breast carcinoma biopsies examined contrasting with the very low or undetectable levels in normal tissue. Furthermore, both proteins associate to the ER and activate phospholipid synthesis in cultured MCF7 and MDA-MB231 breast cancer cells and in human breast cancer samples. Stripping tumor membranes of Fra-1 and c-Fos prior to assaying their lipid synthesis capacity in vitro results in nonactivated lipid synthesis levels that are restored to their initial activated state by addition of Fra-1 and/or c-Fos to the assays. In MDA-MB231 cells primed to proliferate, blocking Fra-1 and c-Fos with neutralizing antibodies blocks lipid-synthesis activation and cells do not proliferate. Taken together, these results disclose the cytoplasmic activity of Fra-1 and c-Fos as potential targets for controlling growth of breast carcinomas by decreasing the rate of membrane biogenesis required for growth.
publishDate 2013
dc.date.none.fl_str_mv 2013-01-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/2388
Motrich, Ruben Dario; Castro, Gonzalo Manuel; Caputto, Beatriz Leonor; Old players with a newly defined function: Fra-1 and c-Fos support growth of human malignant breast tumors by activating membrane biogenesis at the cytoplasm; Public Library of Science; Plos One; 8; 1; 2-1-2013; 53211-5311
1932-6203
url http://hdl.handle.net/11336/2388
identifier_str_mv Motrich, Ruben Dario; Castro, Gonzalo Manuel; Caputto, Beatriz Leonor; Old players with a newly defined function: Fra-1 and c-Fos support growth of human malignant breast tumors by activating membrane biogenesis at the cytoplasm; Public Library of Science; Plos One; 8; 1; 2-1-2013; 53211-5311
1932-6203
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/DOI:10.1371/journal.pone.0053211
info:eu-repo/semantics/altIdentifier/url/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3534677/
info:eu-repo/semantics/altIdentifier/url/http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0053211
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Public Library of Science
publisher.none.fl_str_mv Public Library of Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980637037821952
score 12.993085