Asymptotic boundary conditions and square integrability in the partition function of AdS gravity
- Autores
- Acosta, Joel Alejandro; Garbarz, Alan Nicolás; Goya, Andrés Fabio; Leston, Mauricio
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- There has been renewed interest in the path-integral computation of the partition function of AdS3 gravity, both in the metric and Chern-Simons formulations. The one-loop partition function around Euclidean AdS3 turns out to be given by the vacuum character of Virasoro group. This stems from the work of Brown and Henneaux (BH) who showed that, in AdS3 gravity with sensible asymptotic boundary conditions, an infinite group of (improper) diffeomorphisms arises which acts canonically on phase space as two independent Virasoro symmetries. The gauge group turns out to be composed of so-called “proper” diffeomorphisms which approach the identity at infinity fast enough. However, it is sometimes far from evident to identify where BH boundary conditions enter in the path integral, and much more difficult to see how the improper diffeomorphisms are left out of the gauge group. In particular, in the metric formulation, Giombi, Maloney and Yin obtained the one-loop partition function around thermal AdS3 resorting to the heat kernel method to compute the determinants coming from the path integral. Here we identify how BH boundary conditions follow naturally from the usual requirement of square-integrability of the metric perturbations. Also, and equally relevant, we clarify how the quotient by only proper diffeomorphisms is implemented, promoting the improper diffeomorphisms to symmetries in the path integral. Our strategy is general enough to apply to other approaches where square integrability is assumed. Finally, we show that square integrability implies that the asymptotic symmetries in higher dimensional AdS gravity are just isometries.
Fil: Acosta, Joel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Garbarz, Alan Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Goya, Andrés Fabio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Leston, Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina - Materia
-
BRST QUANTIZATION
FIELD THEORIES IN LOWER DIMENSIONS
MODELS OF QUANTUM GRAVITY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/146096
Ver los metadatos del registro completo
id |
CONICETDig_58dd820918f1cf40fd494151cdae1156 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/146096 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Asymptotic boundary conditions and square integrability in the partition function of AdS gravityAcosta, Joel AlejandroGarbarz, Alan NicolásGoya, Andrés FabioLeston, MauricioBRST QUANTIZATIONFIELD THEORIES IN LOWER DIMENSIONSMODELS OF QUANTUM GRAVITYhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1There has been renewed interest in the path-integral computation of the partition function of AdS3 gravity, both in the metric and Chern-Simons formulations. The one-loop partition function around Euclidean AdS3 turns out to be given by the vacuum character of Virasoro group. This stems from the work of Brown and Henneaux (BH) who showed that, in AdS3 gravity with sensible asymptotic boundary conditions, an infinite group of (improper) diffeomorphisms arises which acts canonically on phase space as two independent Virasoro symmetries. The gauge group turns out to be composed of so-called “proper” diffeomorphisms which approach the identity at infinity fast enough. However, it is sometimes far from evident to identify where BH boundary conditions enter in the path integral, and much more difficult to see how the improper diffeomorphisms are left out of the gauge group. In particular, in the metric formulation, Giombi, Maloney and Yin obtained the one-loop partition function around thermal AdS3 resorting to the heat kernel method to compute the determinants coming from the path integral. Here we identify how BH boundary conditions follow naturally from the usual requirement of square-integrability of the metric perturbations. Also, and equally relevant, we clarify how the quotient by only proper diffeomorphisms is implemented, promoting the improper diffeomorphisms to symmetries in the path integral. Our strategy is general enough to apply to other approaches where square integrability is assumed. Finally, we show that square integrability implies that the asymptotic symmetries in higher dimensional AdS gravity are just isometries.Fil: Acosta, Joel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Garbarz, Alan Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Goya, Andrés Fabio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Leston, Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaSpringer2020-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/146096Acosta, Joel Alejandro; Garbarz, Alan Nicolás; Goya, Andrés Fabio; Leston, Mauricio; Asymptotic boundary conditions and square integrability in the partition function of AdS gravity; Springer; Journal of High Energy Physics; 2020; 6; 6-2020; 1-101126-6708CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP06(2020)172info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:43Zoai:ri.conicet.gov.ar:11336/146096instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:43.61CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Asymptotic boundary conditions and square integrability in the partition function of AdS gravity |
title |
Asymptotic boundary conditions and square integrability in the partition function of AdS gravity |
spellingShingle |
Asymptotic boundary conditions and square integrability in the partition function of AdS gravity Acosta, Joel Alejandro BRST QUANTIZATION FIELD THEORIES IN LOWER DIMENSIONS MODELS OF QUANTUM GRAVITY |
title_short |
Asymptotic boundary conditions and square integrability in the partition function of AdS gravity |
title_full |
Asymptotic boundary conditions and square integrability in the partition function of AdS gravity |
title_fullStr |
Asymptotic boundary conditions and square integrability in the partition function of AdS gravity |
title_full_unstemmed |
Asymptotic boundary conditions and square integrability in the partition function of AdS gravity |
title_sort |
Asymptotic boundary conditions and square integrability in the partition function of AdS gravity |
dc.creator.none.fl_str_mv |
Acosta, Joel Alejandro Garbarz, Alan Nicolás Goya, Andrés Fabio Leston, Mauricio |
author |
Acosta, Joel Alejandro |
author_facet |
Acosta, Joel Alejandro Garbarz, Alan Nicolás Goya, Andrés Fabio Leston, Mauricio |
author_role |
author |
author2 |
Garbarz, Alan Nicolás Goya, Andrés Fabio Leston, Mauricio |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
BRST QUANTIZATION FIELD THEORIES IN LOWER DIMENSIONS MODELS OF QUANTUM GRAVITY |
topic |
BRST QUANTIZATION FIELD THEORIES IN LOWER DIMENSIONS MODELS OF QUANTUM GRAVITY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
There has been renewed interest in the path-integral computation of the partition function of AdS3 gravity, both in the metric and Chern-Simons formulations. The one-loop partition function around Euclidean AdS3 turns out to be given by the vacuum character of Virasoro group. This stems from the work of Brown and Henneaux (BH) who showed that, in AdS3 gravity with sensible asymptotic boundary conditions, an infinite group of (improper) diffeomorphisms arises which acts canonically on phase space as two independent Virasoro symmetries. The gauge group turns out to be composed of so-called “proper” diffeomorphisms which approach the identity at infinity fast enough. However, it is sometimes far from evident to identify where BH boundary conditions enter in the path integral, and much more difficult to see how the improper diffeomorphisms are left out of the gauge group. In particular, in the metric formulation, Giombi, Maloney and Yin obtained the one-loop partition function around thermal AdS3 resorting to the heat kernel method to compute the determinants coming from the path integral. Here we identify how BH boundary conditions follow naturally from the usual requirement of square-integrability of the metric perturbations. Also, and equally relevant, we clarify how the quotient by only proper diffeomorphisms is implemented, promoting the improper diffeomorphisms to symmetries in the path integral. Our strategy is general enough to apply to other approaches where square integrability is assumed. Finally, we show that square integrability implies that the asymptotic symmetries in higher dimensional AdS gravity are just isometries. Fil: Acosta, Joel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Garbarz, Alan Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Goya, Andrés Fabio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Leston, Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina |
description |
There has been renewed interest in the path-integral computation of the partition function of AdS3 gravity, both in the metric and Chern-Simons formulations. The one-loop partition function around Euclidean AdS3 turns out to be given by the vacuum character of Virasoro group. This stems from the work of Brown and Henneaux (BH) who showed that, in AdS3 gravity with sensible asymptotic boundary conditions, an infinite group of (improper) diffeomorphisms arises which acts canonically on phase space as two independent Virasoro symmetries. The gauge group turns out to be composed of so-called “proper” diffeomorphisms which approach the identity at infinity fast enough. However, it is sometimes far from evident to identify where BH boundary conditions enter in the path integral, and much more difficult to see how the improper diffeomorphisms are left out of the gauge group. In particular, in the metric formulation, Giombi, Maloney and Yin obtained the one-loop partition function around thermal AdS3 resorting to the heat kernel method to compute the determinants coming from the path integral. Here we identify how BH boundary conditions follow naturally from the usual requirement of square-integrability of the metric perturbations. Also, and equally relevant, we clarify how the quotient by only proper diffeomorphisms is implemented, promoting the improper diffeomorphisms to symmetries in the path integral. Our strategy is general enough to apply to other approaches where square integrability is assumed. Finally, we show that square integrability implies that the asymptotic symmetries in higher dimensional AdS gravity are just isometries. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/146096 Acosta, Joel Alejandro; Garbarz, Alan Nicolás; Goya, Andrés Fabio; Leston, Mauricio; Asymptotic boundary conditions and square integrability in the partition function of AdS gravity; Springer; Journal of High Energy Physics; 2020; 6; 6-2020; 1-10 1126-6708 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/146096 |
identifier_str_mv |
Acosta, Joel Alejandro; Garbarz, Alan Nicolás; Goya, Andrés Fabio; Leston, Mauricio; Asymptotic boundary conditions and square integrability in the partition function of AdS gravity; Springer; Journal of High Energy Physics; 2020; 6; 6-2020; 1-10 1126-6708 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP06(2020)172 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268876593692672 |
score |
13.13397 |