Mechanical evaluation of polylactic acid (PLA) based composites reinforced with different calcium phosphates

Autores
Pérez, Claudio Javier; Eisenberg, Patricia; Bernal, Celina Raquel; Perez, Ezequiel Martin
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In the present work, the mechanical performance of polylactic acid (PLA) based composites reinforced with hydroxyapatite (HA) or β-tricalcium phosphate (β-TCP) was investigated. The polymer was melt compounded with 1 and 2.5 wt% of particles by using an intensive mixer or a twin screw extruder. Morphological, thermal and rheological studies were performed to analyze the composites internal structure and filler-matrix interaction. The mechanical behavior was investigated through uniaxial tensile and quasi-static fracture tests. The different characterization techniques evidenced a better filler dispersion for composites obtained by extrusion independently of the filler used. A relatively weak filler-matrix interaction was revealed from morphological observations and rheological measurements. In addition, thermal analysis evidenced similar crystalline structure for all of the investigated materials. In general, uniaxial tensile parameters displayed almost constant values independently of the filler content or compounding method. Particularly, extruded composites with 2.5 wt% filler exhibited slightly increased ductility respect to neat PLA which was related to improved filler dispersion. The PLA matrix displayed load-displacement curves with ductile instability in quasi-static fracture tests. On the other hand, the composites with 2.5 wt% filler exhibited an increased stable crack growth followed by ductile instability. The fracture process was quantitatively described by means of critical stress intensity factor (K IQ) and strain energy release rate at propagation (G CP) parameters. The extruded composites with 2.5 wt% filler displayed improved propagation fracture toughness. Based on fractured surfaces analysis this enhanced behavior, not largely reported for untreated rigid fillers, was attributed to the effective activation of the toughening mechanisms of particle debonding and subsequent plastic void growth.
Fil: Pérez, Claudio Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Eisenberg, Patricia. Instituto Nacional de Tecnología Industrial; Argentina
Fil: Bernal, Celina Raquel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnología en Polímeros y Nanotecnología. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnología en Polímeros y Nanotecnología; Argentina
Fil: Perez, Ezequiel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnología en Polímeros y Nanotecnología. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnología en Polímeros y Nanotecnología; Argentina
Materia
Polylactic Acid (PLA)
Calcium phosphates
Mechanical properties
Fracture toughness
Nivel de accesibilidad
acceso embargado
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/90907

id CONICETDig_583251600377e5d3ee98a0e2a51d70d5
oai_identifier_str oai:ri.conicet.gov.ar:11336/90907
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Mechanical evaluation of polylactic acid (PLA) based composites reinforced with different calcium phosphatesPérez, Claudio JavierEisenberg, PatriciaBernal, Celina RaquelPerez, Ezequiel MartinPolylactic Acid (PLA)Calcium phosphatesMechanical propertiesFracture toughnesshttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2In the present work, the mechanical performance of polylactic acid (PLA) based composites reinforced with hydroxyapatite (HA) or β-tricalcium phosphate (β-TCP) was investigated. The polymer was melt compounded with 1 and 2.5 wt% of particles by using an intensive mixer or a twin screw extruder. Morphological, thermal and rheological studies were performed to analyze the composites internal structure and filler-matrix interaction. The mechanical behavior was investigated through uniaxial tensile and quasi-static fracture tests. The different characterization techniques evidenced a better filler dispersion for composites obtained by extrusion independently of the filler used. A relatively weak filler-matrix interaction was revealed from morphological observations and rheological measurements. In addition, thermal analysis evidenced similar crystalline structure for all of the investigated materials. In general, uniaxial tensile parameters displayed almost constant values independently of the filler content or compounding method. Particularly, extruded composites with 2.5 wt% filler exhibited slightly increased ductility respect to neat PLA which was related to improved filler dispersion. The PLA matrix displayed load-displacement curves with ductile instability in quasi-static fracture tests. On the other hand, the composites with 2.5 wt% filler exhibited an increased stable crack growth followed by ductile instability. The fracture process was quantitatively described by means of critical stress intensity factor (K IQ) and strain energy release rate at propagation (G CP) parameters. The extruded composites with 2.5 wt% filler displayed improved propagation fracture toughness. Based on fractured surfaces analysis this enhanced behavior, not largely reported for untreated rigid fillers, was attributed to the effective activation of the toughening mechanisms of particle debonding and subsequent plastic void growth.Fil: Pérez, Claudio Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Eisenberg, Patricia. Instituto Nacional de Tecnología Industrial; ArgentinaFil: Bernal, Celina Raquel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnología en Polímeros y Nanotecnología. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnología en Polímeros y Nanotecnología; ArgentinaFil: Perez, Ezequiel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnología en Polímeros y Nanotecnología. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnología en Polímeros y Nanotecnología; ArgentinaInstitute of Physics Publishing2018-08-31info:eu-repo/date/embargoEnd/2020-02-18info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/90907Pérez, Claudio Javier; Eisenberg, Patricia; Bernal, Celina Raquel; Perez, Ezequiel Martin; Mechanical evaluation of polylactic acid (PLA) based composites reinforced with different calcium phosphates; Institute of Physics Publishing; Materials Research Express; 5; 10; 31-8-2018; 1053042053-1591CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/2053-1591/aadb5binfo:eu-repo/semantics/altIdentifier/doi/10.1088/2053-1591/aadb5binfo:eu-repo/semantics/embargoedAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:43:35Zoai:ri.conicet.gov.ar:11336/90907instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:43:35.464CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Mechanical evaluation of polylactic acid (PLA) based composites reinforced with different calcium phosphates
title Mechanical evaluation of polylactic acid (PLA) based composites reinforced with different calcium phosphates
spellingShingle Mechanical evaluation of polylactic acid (PLA) based composites reinforced with different calcium phosphates
Pérez, Claudio Javier
Polylactic Acid (PLA)
Calcium phosphates
Mechanical properties
Fracture toughness
title_short Mechanical evaluation of polylactic acid (PLA) based composites reinforced with different calcium phosphates
title_full Mechanical evaluation of polylactic acid (PLA) based composites reinforced with different calcium phosphates
title_fullStr Mechanical evaluation of polylactic acid (PLA) based composites reinforced with different calcium phosphates
title_full_unstemmed Mechanical evaluation of polylactic acid (PLA) based composites reinforced with different calcium phosphates
title_sort Mechanical evaluation of polylactic acid (PLA) based composites reinforced with different calcium phosphates
dc.creator.none.fl_str_mv Pérez, Claudio Javier
Eisenberg, Patricia
Bernal, Celina Raquel
Perez, Ezequiel Martin
author Pérez, Claudio Javier
author_facet Pérez, Claudio Javier
Eisenberg, Patricia
Bernal, Celina Raquel
Perez, Ezequiel Martin
author_role author
author2 Eisenberg, Patricia
Bernal, Celina Raquel
Perez, Ezequiel Martin
author2_role author
author
author
dc.subject.none.fl_str_mv Polylactic Acid (PLA)
Calcium phosphates
Mechanical properties
Fracture toughness
topic Polylactic Acid (PLA)
Calcium phosphates
Mechanical properties
Fracture toughness
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv In the present work, the mechanical performance of polylactic acid (PLA) based composites reinforced with hydroxyapatite (HA) or β-tricalcium phosphate (β-TCP) was investigated. The polymer was melt compounded with 1 and 2.5 wt% of particles by using an intensive mixer or a twin screw extruder. Morphological, thermal and rheological studies were performed to analyze the composites internal structure and filler-matrix interaction. The mechanical behavior was investigated through uniaxial tensile and quasi-static fracture tests. The different characterization techniques evidenced a better filler dispersion for composites obtained by extrusion independently of the filler used. A relatively weak filler-matrix interaction was revealed from morphological observations and rheological measurements. In addition, thermal analysis evidenced similar crystalline structure for all of the investigated materials. In general, uniaxial tensile parameters displayed almost constant values independently of the filler content or compounding method. Particularly, extruded composites with 2.5 wt% filler exhibited slightly increased ductility respect to neat PLA which was related to improved filler dispersion. The PLA matrix displayed load-displacement curves with ductile instability in quasi-static fracture tests. On the other hand, the composites with 2.5 wt% filler exhibited an increased stable crack growth followed by ductile instability. The fracture process was quantitatively described by means of critical stress intensity factor (K IQ) and strain energy release rate at propagation (G CP) parameters. The extruded composites with 2.5 wt% filler displayed improved propagation fracture toughness. Based on fractured surfaces analysis this enhanced behavior, not largely reported for untreated rigid fillers, was attributed to the effective activation of the toughening mechanisms of particle debonding and subsequent plastic void growth.
Fil: Pérez, Claudio Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Eisenberg, Patricia. Instituto Nacional de Tecnología Industrial; Argentina
Fil: Bernal, Celina Raquel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnología en Polímeros y Nanotecnología. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnología en Polímeros y Nanotecnología; Argentina
Fil: Perez, Ezequiel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnología en Polímeros y Nanotecnología. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnología en Polímeros y Nanotecnología; Argentina
description In the present work, the mechanical performance of polylactic acid (PLA) based composites reinforced with hydroxyapatite (HA) or β-tricalcium phosphate (β-TCP) was investigated. The polymer was melt compounded with 1 and 2.5 wt% of particles by using an intensive mixer or a twin screw extruder. Morphological, thermal and rheological studies were performed to analyze the composites internal structure and filler-matrix interaction. The mechanical behavior was investigated through uniaxial tensile and quasi-static fracture tests. The different characterization techniques evidenced a better filler dispersion for composites obtained by extrusion independently of the filler used. A relatively weak filler-matrix interaction was revealed from morphological observations and rheological measurements. In addition, thermal analysis evidenced similar crystalline structure for all of the investigated materials. In general, uniaxial tensile parameters displayed almost constant values independently of the filler content or compounding method. Particularly, extruded composites with 2.5 wt% filler exhibited slightly increased ductility respect to neat PLA which was related to improved filler dispersion. The PLA matrix displayed load-displacement curves with ductile instability in quasi-static fracture tests. On the other hand, the composites with 2.5 wt% filler exhibited an increased stable crack growth followed by ductile instability. The fracture process was quantitatively described by means of critical stress intensity factor (K IQ) and strain energy release rate at propagation (G CP) parameters. The extruded composites with 2.5 wt% filler displayed improved propagation fracture toughness. Based on fractured surfaces analysis this enhanced behavior, not largely reported for untreated rigid fillers, was attributed to the effective activation of the toughening mechanisms of particle debonding and subsequent plastic void growth.
publishDate 2018
dc.date.none.fl_str_mv 2018-08-31
info:eu-repo/date/embargoEnd/2020-02-18
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/90907
Pérez, Claudio Javier; Eisenberg, Patricia; Bernal, Celina Raquel; Perez, Ezequiel Martin; Mechanical evaluation of polylactic acid (PLA) based composites reinforced with different calcium phosphates; Institute of Physics Publishing; Materials Research Express; 5; 10; 31-8-2018; 105304
2053-1591
CONICET Digital
CONICET
url http://hdl.handle.net/11336/90907
identifier_str_mv Pérez, Claudio Javier; Eisenberg, Patricia; Bernal, Celina Raquel; Perez, Ezequiel Martin; Mechanical evaluation of polylactic acid (PLA) based composites reinforced with different calcium phosphates; Institute of Physics Publishing; Materials Research Express; 5; 10; 31-8-2018; 105304
2053-1591
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/2053-1591/aadb5b
info:eu-repo/semantics/altIdentifier/doi/10.1088/2053-1591/aadb5b
dc.rights.none.fl_str_mv info:eu-repo/semantics/embargoedAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv embargoedAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Institute of Physics Publishing
publisher.none.fl_str_mv Institute of Physics Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268611908993024
score 13.13397