Tensile Behavior of 3D Printed Polylactic Acid (PLA) Based Composites Reinforced with Natural Fiber
- Autores
- Agaliotis, Eliana Mabel; Ake-Concha, Baltazar D.; May Pat, Alejandro; Morales Arias, Juan P.; Bernal, Celina Raquel; Valadez Gonzalez, Alex; Herrera Franco, Pedro J.; Proust, Gwénaëlle; Koh Dzul, J. Francisco; Carrillo, Jose G.; Flores Johnson, Emmanuel A.
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Natural fiber-reinforced composite (NFRC) filaments for 3D printing were fabricated using polylactic acid (PLA) reinforced with 1–5 wt% henequen flour comprising particles with sizes between 90–250 μm. The flour was obtained from natural henequen fibers. NFRCs and pristine PLA specimens were printed with a 0° raster angle for tension tests. The results showed that the NFRCs’ measured density, porosity, and degree of crystallinity increased with flour content. The tensile tests showed that the NFRC Young’s modulus was lower than that of the printed pristine PLA. For 1 wt% flour content, the NFRCs’ maximum stress and strain to failure were higher than those of the printed PLA, which was attributed to the henequen fibers acting as reinforcement and delaying crack growth. However, for 2 wt% and higher flour contents, the NFRCs’ maximum stress was lower than that of the printed PLA. Microscopic characterization after testing showed an increase in voids and defects, with the increase in flour content attributed to particle agglomeration. For 1 wt% flour content, the NFRCs were also printed with raster angles of ±45° and 90° for comparison; the highest tensile properties were obtained with a 0° raster angle. Finally, adding 3 wt% content of maleic anhydride to the NFRC with 1 wt% flour content slightly increased the maximum stress. The results presented herein warrant further research to fully understand the mechanical properties of printed NFRCs made of PLA reinforced with natural henequen fibers.
Fil: Agaliotis, Eliana Mabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnología en Polímeros y Nanotecnología. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnología en Polímeros y Nanotecnología; Argentina
Fil: Ake-Concha, Baltazar D.. CENTRO DE INVESTIGACION CIENTIFICA DE YUCATAN (CICY);
Fil: May Pat, Alejandro. CENTRO DE INVESTIGACION CIENTIFICA DE YUCATAN (CICY);
Fil: Morales Arias, Juan P.. No especifíca;
Fil: Bernal, Celina Raquel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnología en Polímeros y Nanotecnología. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnología en Polímeros y Nanotecnología; Argentina
Fil: Valadez Gonzalez, Alex. CENTRO DE INVESTIGACION CIENTIFICA DE YUCATAN (CICY);
Fil: Herrera Franco, Pedro J.. CENTRO DE INVESTIGACION CIENTIFICA DE YUCATAN (CICY);
Fil: Proust, Gwénaëlle. University of Sydney; Australia
Fil: Koh Dzul, J. Francisco. CENTRO DE INVESTIGACION CIENTIFICA DE YUCATAN (CICY);
Fil: Carrillo, Jose G.. CENTRO DE INVESTIGACION CIENTIFICA DE YUCATAN (CICY);
Fil: Flores Johnson, Emmanuel A.. University of New South Wales; Australia - Materia
-
3D PRINTING
ADDITIVE MANUFACTURING
HENEQUEN FIBER
MECHANICAL PROPERTY
NATURAL FIBER
NATURAL FIBER REINFORCED COMPOSITE (NFRC)
POLYLACTIC ACID (PLA) - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/214719
Ver los metadatos del registro completo
id |
CONICETDig_6c05ba8de4687e6f5d720772644f8766 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/214719 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Tensile Behavior of 3D Printed Polylactic Acid (PLA) Based Composites Reinforced with Natural FiberAgaliotis, Eliana MabelAke-Concha, Baltazar D.May Pat, AlejandroMorales Arias, Juan P.Bernal, Celina RaquelValadez Gonzalez, AlexHerrera Franco, Pedro J.Proust, GwénaëlleKoh Dzul, J. FranciscoCarrillo, Jose G.Flores Johnson, Emmanuel A.3D PRINTINGADDITIVE MANUFACTURINGHENEQUEN FIBERMECHANICAL PROPERTYNATURAL FIBERNATURAL FIBER REINFORCED COMPOSITE (NFRC)POLYLACTIC ACID (PLA)https://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2Natural fiber-reinforced composite (NFRC) filaments for 3D printing were fabricated using polylactic acid (PLA) reinforced with 1–5 wt% henequen flour comprising particles with sizes between 90–250 μm. The flour was obtained from natural henequen fibers. NFRCs and pristine PLA specimens were printed with a 0° raster angle for tension tests. The results showed that the NFRCs’ measured density, porosity, and degree of crystallinity increased with flour content. The tensile tests showed that the NFRC Young’s modulus was lower than that of the printed pristine PLA. For 1 wt% flour content, the NFRCs’ maximum stress and strain to failure were higher than those of the printed PLA, which was attributed to the henequen fibers acting as reinforcement and delaying crack growth. However, for 2 wt% and higher flour contents, the NFRCs’ maximum stress was lower than that of the printed PLA. Microscopic characterization after testing showed an increase in voids and defects, with the increase in flour content attributed to particle agglomeration. For 1 wt% flour content, the NFRCs were also printed with raster angles of ±45° and 90° for comparison; the highest tensile properties were obtained with a 0° raster angle. Finally, adding 3 wt% content of maleic anhydride to the NFRC with 1 wt% flour content slightly increased the maximum stress. The results presented herein warrant further research to fully understand the mechanical properties of printed NFRCs made of PLA reinforced with natural henequen fibers.Fil: Agaliotis, Eliana Mabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnología en Polímeros y Nanotecnología. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnología en Polímeros y Nanotecnología; ArgentinaFil: Ake-Concha, Baltazar D.. CENTRO DE INVESTIGACION CIENTIFICA DE YUCATAN (CICY);Fil: May Pat, Alejandro. CENTRO DE INVESTIGACION CIENTIFICA DE YUCATAN (CICY);Fil: Morales Arias, Juan P.. No especifíca;Fil: Bernal, Celina Raquel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnología en Polímeros y Nanotecnología. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnología en Polímeros y Nanotecnología; ArgentinaFil: Valadez Gonzalez, Alex. CENTRO DE INVESTIGACION CIENTIFICA DE YUCATAN (CICY);Fil: Herrera Franco, Pedro J.. CENTRO DE INVESTIGACION CIENTIFICA DE YUCATAN (CICY);Fil: Proust, Gwénaëlle. University of Sydney; AustraliaFil: Koh Dzul, J. Francisco. CENTRO DE INVESTIGACION CIENTIFICA DE YUCATAN (CICY);Fil: Carrillo, Jose G.. CENTRO DE INVESTIGACION CIENTIFICA DE YUCATAN (CICY);Fil: Flores Johnson, Emmanuel A.. University of New South Wales; AustraliaMDPI2022-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/214719Agaliotis, Eliana Mabel; Ake-Concha, Baltazar D.; May Pat, Alejandro; Morales Arias, Juan P.; Bernal, Celina Raquel; et al.; Tensile Behavior of 3D Printed Polylactic Acid (PLA) Based Composites Reinforced with Natural Fiber; MDPI; Polymers; 14; 19; 9-2022; 1-172073-4360CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2073-4360/14/19/3976info:eu-repo/semantics/altIdentifier/doi/10.3390/polym14193976info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:43Zoai:ri.conicet.gov.ar:11336/214719instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:43.849CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Tensile Behavior of 3D Printed Polylactic Acid (PLA) Based Composites Reinforced with Natural Fiber |
title |
Tensile Behavior of 3D Printed Polylactic Acid (PLA) Based Composites Reinforced with Natural Fiber |
spellingShingle |
Tensile Behavior of 3D Printed Polylactic Acid (PLA) Based Composites Reinforced with Natural Fiber Agaliotis, Eliana Mabel 3D PRINTING ADDITIVE MANUFACTURING HENEQUEN FIBER MECHANICAL PROPERTY NATURAL FIBER NATURAL FIBER REINFORCED COMPOSITE (NFRC) POLYLACTIC ACID (PLA) |
title_short |
Tensile Behavior of 3D Printed Polylactic Acid (PLA) Based Composites Reinforced with Natural Fiber |
title_full |
Tensile Behavior of 3D Printed Polylactic Acid (PLA) Based Composites Reinforced with Natural Fiber |
title_fullStr |
Tensile Behavior of 3D Printed Polylactic Acid (PLA) Based Composites Reinforced with Natural Fiber |
title_full_unstemmed |
Tensile Behavior of 3D Printed Polylactic Acid (PLA) Based Composites Reinforced with Natural Fiber |
title_sort |
Tensile Behavior of 3D Printed Polylactic Acid (PLA) Based Composites Reinforced with Natural Fiber |
dc.creator.none.fl_str_mv |
Agaliotis, Eliana Mabel Ake-Concha, Baltazar D. May Pat, Alejandro Morales Arias, Juan P. Bernal, Celina Raquel Valadez Gonzalez, Alex Herrera Franco, Pedro J. Proust, Gwénaëlle Koh Dzul, J. Francisco Carrillo, Jose G. Flores Johnson, Emmanuel A. |
author |
Agaliotis, Eliana Mabel |
author_facet |
Agaliotis, Eliana Mabel Ake-Concha, Baltazar D. May Pat, Alejandro Morales Arias, Juan P. Bernal, Celina Raquel Valadez Gonzalez, Alex Herrera Franco, Pedro J. Proust, Gwénaëlle Koh Dzul, J. Francisco Carrillo, Jose G. Flores Johnson, Emmanuel A. |
author_role |
author |
author2 |
Ake-Concha, Baltazar D. May Pat, Alejandro Morales Arias, Juan P. Bernal, Celina Raquel Valadez Gonzalez, Alex Herrera Franco, Pedro J. Proust, Gwénaëlle Koh Dzul, J. Francisco Carrillo, Jose G. Flores Johnson, Emmanuel A. |
author2_role |
author author author author author author author author author author |
dc.subject.none.fl_str_mv |
3D PRINTING ADDITIVE MANUFACTURING HENEQUEN FIBER MECHANICAL PROPERTY NATURAL FIBER NATURAL FIBER REINFORCED COMPOSITE (NFRC) POLYLACTIC ACID (PLA) |
topic |
3D PRINTING ADDITIVE MANUFACTURING HENEQUEN FIBER MECHANICAL PROPERTY NATURAL FIBER NATURAL FIBER REINFORCED COMPOSITE (NFRC) POLYLACTIC ACID (PLA) |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Natural fiber-reinforced composite (NFRC) filaments for 3D printing were fabricated using polylactic acid (PLA) reinforced with 1–5 wt% henequen flour comprising particles with sizes between 90–250 μm. The flour was obtained from natural henequen fibers. NFRCs and pristine PLA specimens were printed with a 0° raster angle for tension tests. The results showed that the NFRCs’ measured density, porosity, and degree of crystallinity increased with flour content. The tensile tests showed that the NFRC Young’s modulus was lower than that of the printed pristine PLA. For 1 wt% flour content, the NFRCs’ maximum stress and strain to failure were higher than those of the printed PLA, which was attributed to the henequen fibers acting as reinforcement and delaying crack growth. However, for 2 wt% and higher flour contents, the NFRCs’ maximum stress was lower than that of the printed PLA. Microscopic characterization after testing showed an increase in voids and defects, with the increase in flour content attributed to particle agglomeration. For 1 wt% flour content, the NFRCs were also printed with raster angles of ±45° and 90° for comparison; the highest tensile properties were obtained with a 0° raster angle. Finally, adding 3 wt% content of maleic anhydride to the NFRC with 1 wt% flour content slightly increased the maximum stress. The results presented herein warrant further research to fully understand the mechanical properties of printed NFRCs made of PLA reinforced with natural henequen fibers. Fil: Agaliotis, Eliana Mabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnología en Polímeros y Nanotecnología. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnología en Polímeros y Nanotecnología; Argentina Fil: Ake-Concha, Baltazar D.. CENTRO DE INVESTIGACION CIENTIFICA DE YUCATAN (CICY); Fil: May Pat, Alejandro. CENTRO DE INVESTIGACION CIENTIFICA DE YUCATAN (CICY); Fil: Morales Arias, Juan P.. No especifíca; Fil: Bernal, Celina Raquel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnología en Polímeros y Nanotecnología. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnología en Polímeros y Nanotecnología; Argentina Fil: Valadez Gonzalez, Alex. CENTRO DE INVESTIGACION CIENTIFICA DE YUCATAN (CICY); Fil: Herrera Franco, Pedro J.. CENTRO DE INVESTIGACION CIENTIFICA DE YUCATAN (CICY); Fil: Proust, Gwénaëlle. University of Sydney; Australia Fil: Koh Dzul, J. Francisco. CENTRO DE INVESTIGACION CIENTIFICA DE YUCATAN (CICY); Fil: Carrillo, Jose G.. CENTRO DE INVESTIGACION CIENTIFICA DE YUCATAN (CICY); Fil: Flores Johnson, Emmanuel A.. University of New South Wales; Australia |
description |
Natural fiber-reinforced composite (NFRC) filaments for 3D printing were fabricated using polylactic acid (PLA) reinforced with 1–5 wt% henequen flour comprising particles with sizes between 90–250 μm. The flour was obtained from natural henequen fibers. NFRCs and pristine PLA specimens were printed with a 0° raster angle for tension tests. The results showed that the NFRCs’ measured density, porosity, and degree of crystallinity increased with flour content. The tensile tests showed that the NFRC Young’s modulus was lower than that of the printed pristine PLA. For 1 wt% flour content, the NFRCs’ maximum stress and strain to failure were higher than those of the printed PLA, which was attributed to the henequen fibers acting as reinforcement and delaying crack growth. However, for 2 wt% and higher flour contents, the NFRCs’ maximum stress was lower than that of the printed PLA. Microscopic characterization after testing showed an increase in voids and defects, with the increase in flour content attributed to particle agglomeration. For 1 wt% flour content, the NFRCs were also printed with raster angles of ±45° and 90° for comparison; the highest tensile properties were obtained with a 0° raster angle. Finally, adding 3 wt% content of maleic anhydride to the NFRC with 1 wt% flour content slightly increased the maximum stress. The results presented herein warrant further research to fully understand the mechanical properties of printed NFRCs made of PLA reinforced with natural henequen fibers. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/214719 Agaliotis, Eliana Mabel; Ake-Concha, Baltazar D.; May Pat, Alejandro; Morales Arias, Juan P.; Bernal, Celina Raquel; et al.; Tensile Behavior of 3D Printed Polylactic Acid (PLA) Based Composites Reinforced with Natural Fiber; MDPI; Polymers; 14; 19; 9-2022; 1-17 2073-4360 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/214719 |
identifier_str_mv |
Agaliotis, Eliana Mabel; Ake-Concha, Baltazar D.; May Pat, Alejandro; Morales Arias, Juan P.; Bernal, Celina Raquel; et al.; Tensile Behavior of 3D Printed Polylactic Acid (PLA) Based Composites Reinforced with Natural Fiber; MDPI; Polymers; 14; 19; 9-2022; 1-17 2073-4360 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2073-4360/14/19/3976 info:eu-repo/semantics/altIdentifier/doi/10.3390/polym14193976 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269244051423232 |
score |
13.13397 |