Tensile Behavior of 3D Printed Polylactic Acid (PLA) Based Composites Reinforced with Natural Fiber

Autores
Agaliotis, Eliana Mabel; Ake-Concha, Baltazar D.; May Pat, Alejandro; Morales Arias, Juan P.; Bernal, Celina Raquel; Valadez Gonzalez, Alex; Herrera Franco, Pedro J.; Proust, Gwénaëlle; Koh Dzul, J. Francisco; Carrillo, Jose G.; Flores Johnson, Emmanuel A.
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Natural fiber-reinforced composite (NFRC) filaments for 3D printing were fabricated using polylactic acid (PLA) reinforced with 1–5 wt% henequen flour comprising particles with sizes between 90–250 μm. The flour was obtained from natural henequen fibers. NFRCs and pristine PLA specimens were printed with a 0° raster angle for tension tests. The results showed that the NFRCs’ measured density, porosity, and degree of crystallinity increased with flour content. The tensile tests showed that the NFRC Young’s modulus was lower than that of the printed pristine PLA. For 1 wt% flour content, the NFRCs’ maximum stress and strain to failure were higher than those of the printed PLA, which was attributed to the henequen fibers acting as reinforcement and delaying crack growth. However, for 2 wt% and higher flour contents, the NFRCs’ maximum stress was lower than that of the printed PLA. Microscopic characterization after testing showed an increase in voids and defects, with the increase in flour content attributed to particle agglomeration. For 1 wt% flour content, the NFRCs were also printed with raster angles of ±45° and 90° for comparison; the highest tensile properties were obtained with a 0° raster angle. Finally, adding 3 wt% content of maleic anhydride to the NFRC with 1 wt% flour content slightly increased the maximum stress. The results presented herein warrant further research to fully understand the mechanical properties of printed NFRCs made of PLA reinforced with natural henequen fibers.
Fil: Agaliotis, Eliana Mabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnología en Polímeros y Nanotecnología. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnología en Polímeros y Nanotecnología; Argentina
Fil: Ake-Concha, Baltazar D.. CENTRO DE INVESTIGACION CIENTIFICA DE YUCATAN (CICY);
Fil: May Pat, Alejandro. CENTRO DE INVESTIGACION CIENTIFICA DE YUCATAN (CICY);
Fil: Morales Arias, Juan P.. No especifíca;
Fil: Bernal, Celina Raquel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnología en Polímeros y Nanotecnología. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnología en Polímeros y Nanotecnología; Argentina
Fil: Valadez Gonzalez, Alex. CENTRO DE INVESTIGACION CIENTIFICA DE YUCATAN (CICY);
Fil: Herrera Franco, Pedro J.. CENTRO DE INVESTIGACION CIENTIFICA DE YUCATAN (CICY);
Fil: Proust, Gwénaëlle. University of Sydney; Australia
Fil: Koh Dzul, J. Francisco. CENTRO DE INVESTIGACION CIENTIFICA DE YUCATAN (CICY);
Fil: Carrillo, Jose G.. CENTRO DE INVESTIGACION CIENTIFICA DE YUCATAN (CICY);
Fil: Flores Johnson, Emmanuel A.. University of New South Wales; Australia
Materia
3D PRINTING
ADDITIVE MANUFACTURING
HENEQUEN FIBER
MECHANICAL PROPERTY
NATURAL FIBER
NATURAL FIBER REINFORCED COMPOSITE (NFRC)
POLYLACTIC ACID (PLA)
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/214719

id CONICETDig_6c05ba8de4687e6f5d720772644f8766
oai_identifier_str oai:ri.conicet.gov.ar:11336/214719
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Tensile Behavior of 3D Printed Polylactic Acid (PLA) Based Composites Reinforced with Natural FiberAgaliotis, Eliana MabelAke-Concha, Baltazar D.May Pat, AlejandroMorales Arias, Juan P.Bernal, Celina RaquelValadez Gonzalez, AlexHerrera Franco, Pedro J.Proust, GwénaëlleKoh Dzul, J. FranciscoCarrillo, Jose G.Flores Johnson, Emmanuel A.3D PRINTINGADDITIVE MANUFACTURINGHENEQUEN FIBERMECHANICAL PROPERTYNATURAL FIBERNATURAL FIBER REINFORCED COMPOSITE (NFRC)POLYLACTIC ACID (PLA)https://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2Natural fiber-reinforced composite (NFRC) filaments for 3D printing were fabricated using polylactic acid (PLA) reinforced with 1–5 wt% henequen flour comprising particles with sizes between 90–250 μm. The flour was obtained from natural henequen fibers. NFRCs and pristine PLA specimens were printed with a 0° raster angle for tension tests. The results showed that the NFRCs’ measured density, porosity, and degree of crystallinity increased with flour content. The tensile tests showed that the NFRC Young’s modulus was lower than that of the printed pristine PLA. For 1 wt% flour content, the NFRCs’ maximum stress and strain to failure were higher than those of the printed PLA, which was attributed to the henequen fibers acting as reinforcement and delaying crack growth. However, for 2 wt% and higher flour contents, the NFRCs’ maximum stress was lower than that of the printed PLA. Microscopic characterization after testing showed an increase in voids and defects, with the increase in flour content attributed to particle agglomeration. For 1 wt% flour content, the NFRCs were also printed with raster angles of ±45° and 90° for comparison; the highest tensile properties were obtained with a 0° raster angle. Finally, adding 3 wt% content of maleic anhydride to the NFRC with 1 wt% flour content slightly increased the maximum stress. The results presented herein warrant further research to fully understand the mechanical properties of printed NFRCs made of PLA reinforced with natural henequen fibers.Fil: Agaliotis, Eliana Mabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnología en Polímeros y Nanotecnología. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnología en Polímeros y Nanotecnología; ArgentinaFil: Ake-Concha, Baltazar D.. CENTRO DE INVESTIGACION CIENTIFICA DE YUCATAN (CICY);Fil: May Pat, Alejandro. CENTRO DE INVESTIGACION CIENTIFICA DE YUCATAN (CICY);Fil: Morales Arias, Juan P.. No especifíca;Fil: Bernal, Celina Raquel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnología en Polímeros y Nanotecnología. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnología en Polímeros y Nanotecnología; ArgentinaFil: Valadez Gonzalez, Alex. CENTRO DE INVESTIGACION CIENTIFICA DE YUCATAN (CICY);Fil: Herrera Franco, Pedro J.. CENTRO DE INVESTIGACION CIENTIFICA DE YUCATAN (CICY);Fil: Proust, Gwénaëlle. University of Sydney; AustraliaFil: Koh Dzul, J. Francisco. CENTRO DE INVESTIGACION CIENTIFICA DE YUCATAN (CICY);Fil: Carrillo, Jose G.. CENTRO DE INVESTIGACION CIENTIFICA DE YUCATAN (CICY);Fil: Flores Johnson, Emmanuel A.. University of New South Wales; AustraliaMDPI2022-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/214719Agaliotis, Eliana Mabel; Ake-Concha, Baltazar D.; May Pat, Alejandro; Morales Arias, Juan P.; Bernal, Celina Raquel; et al.; Tensile Behavior of 3D Printed Polylactic Acid (PLA) Based Composites Reinforced with Natural Fiber; MDPI; Polymers; 14; 19; 9-2022; 1-172073-4360CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2073-4360/14/19/3976info:eu-repo/semantics/altIdentifier/doi/10.3390/polym14193976info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:43Zoai:ri.conicet.gov.ar:11336/214719instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:43.849CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Tensile Behavior of 3D Printed Polylactic Acid (PLA) Based Composites Reinforced with Natural Fiber
title Tensile Behavior of 3D Printed Polylactic Acid (PLA) Based Composites Reinforced with Natural Fiber
spellingShingle Tensile Behavior of 3D Printed Polylactic Acid (PLA) Based Composites Reinforced with Natural Fiber
Agaliotis, Eliana Mabel
3D PRINTING
ADDITIVE MANUFACTURING
HENEQUEN FIBER
MECHANICAL PROPERTY
NATURAL FIBER
NATURAL FIBER REINFORCED COMPOSITE (NFRC)
POLYLACTIC ACID (PLA)
title_short Tensile Behavior of 3D Printed Polylactic Acid (PLA) Based Composites Reinforced with Natural Fiber
title_full Tensile Behavior of 3D Printed Polylactic Acid (PLA) Based Composites Reinforced with Natural Fiber
title_fullStr Tensile Behavior of 3D Printed Polylactic Acid (PLA) Based Composites Reinforced with Natural Fiber
title_full_unstemmed Tensile Behavior of 3D Printed Polylactic Acid (PLA) Based Composites Reinforced with Natural Fiber
title_sort Tensile Behavior of 3D Printed Polylactic Acid (PLA) Based Composites Reinforced with Natural Fiber
dc.creator.none.fl_str_mv Agaliotis, Eliana Mabel
Ake-Concha, Baltazar D.
May Pat, Alejandro
Morales Arias, Juan P.
Bernal, Celina Raquel
Valadez Gonzalez, Alex
Herrera Franco, Pedro J.
Proust, Gwénaëlle
Koh Dzul, J. Francisco
Carrillo, Jose G.
Flores Johnson, Emmanuel A.
author Agaliotis, Eliana Mabel
author_facet Agaliotis, Eliana Mabel
Ake-Concha, Baltazar D.
May Pat, Alejandro
Morales Arias, Juan P.
Bernal, Celina Raquel
Valadez Gonzalez, Alex
Herrera Franco, Pedro J.
Proust, Gwénaëlle
Koh Dzul, J. Francisco
Carrillo, Jose G.
Flores Johnson, Emmanuel A.
author_role author
author2 Ake-Concha, Baltazar D.
May Pat, Alejandro
Morales Arias, Juan P.
Bernal, Celina Raquel
Valadez Gonzalez, Alex
Herrera Franco, Pedro J.
Proust, Gwénaëlle
Koh Dzul, J. Francisco
Carrillo, Jose G.
Flores Johnson, Emmanuel A.
author2_role author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv 3D PRINTING
ADDITIVE MANUFACTURING
HENEQUEN FIBER
MECHANICAL PROPERTY
NATURAL FIBER
NATURAL FIBER REINFORCED COMPOSITE (NFRC)
POLYLACTIC ACID (PLA)
topic 3D PRINTING
ADDITIVE MANUFACTURING
HENEQUEN FIBER
MECHANICAL PROPERTY
NATURAL FIBER
NATURAL FIBER REINFORCED COMPOSITE (NFRC)
POLYLACTIC ACID (PLA)
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Natural fiber-reinforced composite (NFRC) filaments for 3D printing were fabricated using polylactic acid (PLA) reinforced with 1–5 wt% henequen flour comprising particles with sizes between 90–250 μm. The flour was obtained from natural henequen fibers. NFRCs and pristine PLA specimens were printed with a 0° raster angle for tension tests. The results showed that the NFRCs’ measured density, porosity, and degree of crystallinity increased with flour content. The tensile tests showed that the NFRC Young’s modulus was lower than that of the printed pristine PLA. For 1 wt% flour content, the NFRCs’ maximum stress and strain to failure were higher than those of the printed PLA, which was attributed to the henequen fibers acting as reinforcement and delaying crack growth. However, for 2 wt% and higher flour contents, the NFRCs’ maximum stress was lower than that of the printed PLA. Microscopic characterization after testing showed an increase in voids and defects, with the increase in flour content attributed to particle agglomeration. For 1 wt% flour content, the NFRCs were also printed with raster angles of ±45° and 90° for comparison; the highest tensile properties were obtained with a 0° raster angle. Finally, adding 3 wt% content of maleic anhydride to the NFRC with 1 wt% flour content slightly increased the maximum stress. The results presented herein warrant further research to fully understand the mechanical properties of printed NFRCs made of PLA reinforced with natural henequen fibers.
Fil: Agaliotis, Eliana Mabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnología en Polímeros y Nanotecnología. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnología en Polímeros y Nanotecnología; Argentina
Fil: Ake-Concha, Baltazar D.. CENTRO DE INVESTIGACION CIENTIFICA DE YUCATAN (CICY);
Fil: May Pat, Alejandro. CENTRO DE INVESTIGACION CIENTIFICA DE YUCATAN (CICY);
Fil: Morales Arias, Juan P.. No especifíca;
Fil: Bernal, Celina Raquel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnología en Polímeros y Nanotecnología. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnología en Polímeros y Nanotecnología; Argentina
Fil: Valadez Gonzalez, Alex. CENTRO DE INVESTIGACION CIENTIFICA DE YUCATAN (CICY);
Fil: Herrera Franco, Pedro J.. CENTRO DE INVESTIGACION CIENTIFICA DE YUCATAN (CICY);
Fil: Proust, Gwénaëlle. University of Sydney; Australia
Fil: Koh Dzul, J. Francisco. CENTRO DE INVESTIGACION CIENTIFICA DE YUCATAN (CICY);
Fil: Carrillo, Jose G.. CENTRO DE INVESTIGACION CIENTIFICA DE YUCATAN (CICY);
Fil: Flores Johnson, Emmanuel A.. University of New South Wales; Australia
description Natural fiber-reinforced composite (NFRC) filaments for 3D printing were fabricated using polylactic acid (PLA) reinforced with 1–5 wt% henequen flour comprising particles with sizes between 90–250 μm. The flour was obtained from natural henequen fibers. NFRCs and pristine PLA specimens were printed with a 0° raster angle for tension tests. The results showed that the NFRCs’ measured density, porosity, and degree of crystallinity increased with flour content. The tensile tests showed that the NFRC Young’s modulus was lower than that of the printed pristine PLA. For 1 wt% flour content, the NFRCs’ maximum stress and strain to failure were higher than those of the printed PLA, which was attributed to the henequen fibers acting as reinforcement and delaying crack growth. However, for 2 wt% and higher flour contents, the NFRCs’ maximum stress was lower than that of the printed PLA. Microscopic characterization after testing showed an increase in voids and defects, with the increase in flour content attributed to particle agglomeration. For 1 wt% flour content, the NFRCs were also printed with raster angles of ±45° and 90° for comparison; the highest tensile properties were obtained with a 0° raster angle. Finally, adding 3 wt% content of maleic anhydride to the NFRC with 1 wt% flour content slightly increased the maximum stress. The results presented herein warrant further research to fully understand the mechanical properties of printed NFRCs made of PLA reinforced with natural henequen fibers.
publishDate 2022
dc.date.none.fl_str_mv 2022-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/214719
Agaliotis, Eliana Mabel; Ake-Concha, Baltazar D.; May Pat, Alejandro; Morales Arias, Juan P.; Bernal, Celina Raquel; et al.; Tensile Behavior of 3D Printed Polylactic Acid (PLA) Based Composites Reinforced with Natural Fiber; MDPI; Polymers; 14; 19; 9-2022; 1-17
2073-4360
CONICET Digital
CONICET
url http://hdl.handle.net/11336/214719
identifier_str_mv Agaliotis, Eliana Mabel; Ake-Concha, Baltazar D.; May Pat, Alejandro; Morales Arias, Juan P.; Bernal, Celina Raquel; et al.; Tensile Behavior of 3D Printed Polylactic Acid (PLA) Based Composites Reinforced with Natural Fiber; MDPI; Polymers; 14; 19; 9-2022; 1-17
2073-4360
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2073-4360/14/19/3976
info:eu-repo/semantics/altIdentifier/doi/10.3390/polym14193976
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269244051423232
score 13.13397