Minimizing errors in RT-PCR detection and quantification of SARS-CoV-2 RNA for wastewater surveillance
- Autores
- Ahmed, Warish; Simpson, Stuart L.; Bertsch, Paul M.; Bibby, Kyle; Bivins, Aaron; Blackall, Linda L.; Bofill-Mas, Sílvia; Bosch, Albert; Brandão, João; Choi, Phil M.; Ciesielski, Mark; Donner, Erica; D'Souza, Nishita; Farnleitner, Andreas H.; Gerrity, Daniel; Gonzalez, Raul; Griffith, John F.; Gyawali, Pradip; Haas, Charles N.; Hamilton, Kerry A.; Hapuarachchi, Hapuarachchige Chanditha; Harwood, Valerie J.; Rajal, Verónica Beatriz; Jackson, Greg; Khan, Stuart J.; Wuertz, Stefan; Xagoraraki, Irene; Zhang, Qian; Zimmer Faust, Amity G.; Shanks, Orin C.
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Wastewater surveillance for pathogens using reverse transcription-polymerase chain reaction (RT-PCR) is an effective and resource-efficient tool for gathering community-level public health information, including the incidence of coronavirus disease-19 (COVID-19). Surveillance of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) inwastewater can potentially provide an earlywarning signal of COVID-19 infections in a community.The capacity of the world´s environmental microbiology and virology laboratories for SARS-CoV-2 RNA characterization in wastewater is increasing rapidly. However, there are no standardized protocols or harmonized quality assurance and quality control (QA/QC) procedures for SARS-CoV-2 wastewater surveillance. This paper is a technical review of factors that can cause false-positive and false-negative errors in the surveillance of SARS-CoV-2 RNA inwastewater, culminating in recommended strategies that can be implemented to identify and mitigate some of these errors. Recommendations include stringent QA/QC measures, representative samplingapproaches, effective virus concentration and efficient RNA extraction, PCR inhibition assessment, inclusion of sample processing controls, and considerations for RT-PCR assay selection and data interpretation. Clear data interpretation guidelines (e.g., determination of positive and negative samples) are critical, particularlywhen the incidence of SARS-CoV-2 inwastewater is low. Corrective and confirmatory actionsmust be in place for inconclusive results or results diverging fromcurrent trends (e.g., initial onset or reemergence of COVID-19 in a community).It is also prudent to perform interlaboratory comparisons to ensure results´ reliability and interpretability for prospective and retrospective analyses. The strategies that are recommended in this review aim to improve SARS-CoV-2 characterization and detection for wastewater surveillance applications. A silver lining of the COVID-19 pandemic is that the efficacy of wastewater surveillance continues to be demonstrated during this global crisis. In the future, wastewater should also play an important role in the surveillance of a range of other communicable diseases.
Fil: Ahmed, Warish. Commonwealth Scientific And Industrial Research Organisation (csiro);
Fil: Simpson, Stuart L.. Commonwealth Scientific And Industrial Research Organisation (csiro);
Fil: Bertsch, Paul M.. Radboud University Medical Center; Países Bajos
Fil: Bibby, Kyle. University of Notre Dame; Estados Unidos
Fil: Bivins, Aaron. University of Notre Dame; Estados Unidos
Fil: Blackall, Linda L.. University of Melbourne; Australia
Fil: Bofill-Mas, Sílvia. Universidad de Barcelona. Facultad de Biología; España
Fil: Bosch, Albert. Universidad de Barcelona; España
Fil: Brandão, João. Instituto Nacional de Saúde Dr. Ricardo Jorge; Portugal
Fil: Choi, Phil M.. The University of Queensland; Australia
Fil: Ciesielski, Mark. University of North Carolina; Estados Unidos
Fil: Donner, Erica. University Of South Australia; Australia
Fil: D'Souza, Nishita. Michigan State University; Estados Unidos
Fil: Farnleitner, Andreas H.. Technische Universitat Wien; Austria
Fil: Gerrity, Daniel. Southern Nevada Water Authority; Estados Unidos
Fil: Gonzalez, Raul. Hampton Roads Sanitation District; Estados Unidos
Fil: Griffith, John F.. Southern California Coastal Water Research Project; Estados Unidos
Fil: Gyawali, Pradip. Institute Of Environmental Science And Research Ltd; Nueva Zelanda
Fil: Haas, Charles N.. Drexel University; Estados Unidos
Fil: Hamilton, Kerry A.. Arizona State University; Estados Unidos
Fil: Hapuarachchi, Hapuarachchige Chanditha. National Environment Agency; Singapur
Fil: Harwood, Valerie J.. University Of South Florida; Estados Unidos
Fil: Rajal, Verónica Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones para la Industria Química; Argentina
Fil: Jackson, Greg. Health Protection Branch; Australia
Fil: Khan, Stuart J.. University of New South Wales; Australia
Fil: Wuertz, Stefan. Stellenbosch University; Sudáfrica
Fil: Xagoraraki, Irene. Michigan State University; Estados Unidos
Fil: Zhang, Qian. University of Minnesota; Estados Unidos
Fil: Zimmer Faust, Amity G.. Southern California Coastal Water Research Project; Estados Unidos
Fil: Shanks, Orin C.. United States Environmental Protection Agency; Estados Unidos - Materia
-
COVID-19
SARS-COV-2
WASTEWATER
SURVEILLANCE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/251110
Ver los metadatos del registro completo
id |
CONICETDig_57af6d4eb893e3717e25a65d9f31b94b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/251110 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Minimizing errors in RT-PCR detection and quantification of SARS-CoV-2 RNA for wastewater surveillanceAhmed, WarishSimpson, Stuart L.Bertsch, Paul M.Bibby, KyleBivins, AaronBlackall, Linda L.Bofill-Mas, SílviaBosch, AlbertBrandão, JoãoChoi, Phil M.Ciesielski, MarkDonner, EricaD'Souza, NishitaFarnleitner, Andreas H.Gerrity, DanielGonzalez, RaulGriffith, John F.Gyawali, PradipHaas, Charles N.Hamilton, Kerry A.Hapuarachchi, Hapuarachchige ChandithaHarwood, Valerie J.Rajal, Verónica BeatrizJackson, GregKhan, Stuart J.Wuertz, StefanXagoraraki, IreneZhang, QianZimmer Faust, Amity G.Shanks, Orin C.COVID-19SARS-COV-2WASTEWATERSURVEILLANCEhttps://purl.org/becyt/ford/2.7https://purl.org/becyt/ford/2Wastewater surveillance for pathogens using reverse transcription-polymerase chain reaction (RT-PCR) is an effective and resource-efficient tool for gathering community-level public health information, including the incidence of coronavirus disease-19 (COVID-19). Surveillance of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) inwastewater can potentially provide an earlywarning signal of COVID-19 infections in a community.The capacity of the world´s environmental microbiology and virology laboratories for SARS-CoV-2 RNA characterization in wastewater is increasing rapidly. However, there are no standardized protocols or harmonized quality assurance and quality control (QA/QC) procedures for SARS-CoV-2 wastewater surveillance. This paper is a technical review of factors that can cause false-positive and false-negative errors in the surveillance of SARS-CoV-2 RNA inwastewater, culminating in recommended strategies that can be implemented to identify and mitigate some of these errors. Recommendations include stringent QA/QC measures, representative samplingapproaches, effective virus concentration and efficient RNA extraction, PCR inhibition assessment, inclusion of sample processing controls, and considerations for RT-PCR assay selection and data interpretation. Clear data interpretation guidelines (e.g., determination of positive and negative samples) are critical, particularlywhen the incidence of SARS-CoV-2 inwastewater is low. Corrective and confirmatory actionsmust be in place for inconclusive results or results diverging fromcurrent trends (e.g., initial onset or reemergence of COVID-19 in a community).It is also prudent to perform interlaboratory comparisons to ensure results´ reliability and interpretability for prospective and retrospective analyses. The strategies that are recommended in this review aim to improve SARS-CoV-2 characterization and detection for wastewater surveillance applications. A silver lining of the COVID-19 pandemic is that the efficacy of wastewater surveillance continues to be demonstrated during this global crisis. In the future, wastewater should also play an important role in the surveillance of a range of other communicable diseases.Fil: Ahmed, Warish. Commonwealth Scientific And Industrial Research Organisation (csiro);Fil: Simpson, Stuart L.. Commonwealth Scientific And Industrial Research Organisation (csiro);Fil: Bertsch, Paul M.. Radboud University Medical Center; Países BajosFil: Bibby, Kyle. University of Notre Dame; Estados UnidosFil: Bivins, Aaron. University of Notre Dame; Estados UnidosFil: Blackall, Linda L.. University of Melbourne; AustraliaFil: Bofill-Mas, Sílvia. Universidad de Barcelona. Facultad de Biología; EspañaFil: Bosch, Albert. Universidad de Barcelona; EspañaFil: Brandão, João. Instituto Nacional de Saúde Dr. Ricardo Jorge; PortugalFil: Choi, Phil M.. The University of Queensland; AustraliaFil: Ciesielski, Mark. University of North Carolina; Estados UnidosFil: Donner, Erica. University Of South Australia; AustraliaFil: D'Souza, Nishita. Michigan State University; Estados UnidosFil: Farnleitner, Andreas H.. Technische Universitat Wien; AustriaFil: Gerrity, Daniel. Southern Nevada Water Authority; Estados UnidosFil: Gonzalez, Raul. Hampton Roads Sanitation District; Estados UnidosFil: Griffith, John F.. Southern California Coastal Water Research Project; Estados UnidosFil: Gyawali, Pradip. Institute Of Environmental Science And Research Ltd; Nueva ZelandaFil: Haas, Charles N.. Drexel University; Estados UnidosFil: Hamilton, Kerry A.. Arizona State University; Estados UnidosFil: Hapuarachchi, Hapuarachchige Chanditha. National Environment Agency; SingapurFil: Harwood, Valerie J.. University Of South Florida; Estados UnidosFil: Rajal, Verónica Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones para la Industria Química; ArgentinaFil: Jackson, Greg. Health Protection Branch; AustraliaFil: Khan, Stuart J.. University of New South Wales; AustraliaFil: Wuertz, Stefan. Stellenbosch University; SudáfricaFil: Xagoraraki, Irene. Michigan State University; Estados UnidosFil: Zhang, Qian. University of Minnesota; Estados UnidosFil: Zimmer Faust, Amity G.. Southern California Coastal Water Research Project; Estados UnidosFil: Shanks, Orin C.. United States Environmental Protection Agency; Estados UnidosElsevier2022-01-20info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/251110Ahmed, Warish; Simpson, Stuart L.; Bertsch, Paul M.; Bibby, Kyle; Bivins, Aaron; et al.; Minimizing errors in RT-PCR detection and quantification of SARS-CoV-2 RNA for wastewater surveillance; Elsevier; Science of the Total Environment; 805; 149877; 20-1-2022; 1-200048-9697CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0048969721049524info:eu-repo/semantics/altIdentifier/doi/10.1016/j.scitotenv.2021.149877info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:45:43Zoai:ri.conicet.gov.ar:11336/251110instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:45:43.496CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Minimizing errors in RT-PCR detection and quantification of SARS-CoV-2 RNA for wastewater surveillance |
title |
Minimizing errors in RT-PCR detection and quantification of SARS-CoV-2 RNA for wastewater surveillance |
spellingShingle |
Minimizing errors in RT-PCR detection and quantification of SARS-CoV-2 RNA for wastewater surveillance Ahmed, Warish COVID-19 SARS-COV-2 WASTEWATER SURVEILLANCE |
title_short |
Minimizing errors in RT-PCR detection and quantification of SARS-CoV-2 RNA for wastewater surveillance |
title_full |
Minimizing errors in RT-PCR detection and quantification of SARS-CoV-2 RNA for wastewater surveillance |
title_fullStr |
Minimizing errors in RT-PCR detection and quantification of SARS-CoV-2 RNA for wastewater surveillance |
title_full_unstemmed |
Minimizing errors in RT-PCR detection and quantification of SARS-CoV-2 RNA for wastewater surveillance |
title_sort |
Minimizing errors in RT-PCR detection and quantification of SARS-CoV-2 RNA for wastewater surveillance |
dc.creator.none.fl_str_mv |
Ahmed, Warish Simpson, Stuart L. Bertsch, Paul M. Bibby, Kyle Bivins, Aaron Blackall, Linda L. Bofill-Mas, Sílvia Bosch, Albert Brandão, João Choi, Phil M. Ciesielski, Mark Donner, Erica D'Souza, Nishita Farnleitner, Andreas H. Gerrity, Daniel Gonzalez, Raul Griffith, John F. Gyawali, Pradip Haas, Charles N. Hamilton, Kerry A. Hapuarachchi, Hapuarachchige Chanditha Harwood, Valerie J. Rajal, Verónica Beatriz Jackson, Greg Khan, Stuart J. Wuertz, Stefan Xagoraraki, Irene Zhang, Qian Zimmer Faust, Amity G. Shanks, Orin C. |
author |
Ahmed, Warish |
author_facet |
Ahmed, Warish Simpson, Stuart L. Bertsch, Paul M. Bibby, Kyle Bivins, Aaron Blackall, Linda L. Bofill-Mas, Sílvia Bosch, Albert Brandão, João Choi, Phil M. Ciesielski, Mark Donner, Erica D'Souza, Nishita Farnleitner, Andreas H. Gerrity, Daniel Gonzalez, Raul Griffith, John F. Gyawali, Pradip Haas, Charles N. Hamilton, Kerry A. Hapuarachchi, Hapuarachchige Chanditha Harwood, Valerie J. Rajal, Verónica Beatriz Jackson, Greg Khan, Stuart J. Wuertz, Stefan Xagoraraki, Irene Zhang, Qian Zimmer Faust, Amity G. Shanks, Orin C. |
author_role |
author |
author2 |
Simpson, Stuart L. Bertsch, Paul M. Bibby, Kyle Bivins, Aaron Blackall, Linda L. Bofill-Mas, Sílvia Bosch, Albert Brandão, João Choi, Phil M. Ciesielski, Mark Donner, Erica D'Souza, Nishita Farnleitner, Andreas H. Gerrity, Daniel Gonzalez, Raul Griffith, John F. Gyawali, Pradip Haas, Charles N. Hamilton, Kerry A. Hapuarachchi, Hapuarachchige Chanditha Harwood, Valerie J. Rajal, Verónica Beatriz Jackson, Greg Khan, Stuart J. Wuertz, Stefan Xagoraraki, Irene Zhang, Qian Zimmer Faust, Amity G. Shanks, Orin C. |
author2_role |
author author author author author author author author author author author author author author author author author author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
COVID-19 SARS-COV-2 WASTEWATER SURVEILLANCE |
topic |
COVID-19 SARS-COV-2 WASTEWATER SURVEILLANCE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.7 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Wastewater surveillance for pathogens using reverse transcription-polymerase chain reaction (RT-PCR) is an effective and resource-efficient tool for gathering community-level public health information, including the incidence of coronavirus disease-19 (COVID-19). Surveillance of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) inwastewater can potentially provide an earlywarning signal of COVID-19 infections in a community.The capacity of the world´s environmental microbiology and virology laboratories for SARS-CoV-2 RNA characterization in wastewater is increasing rapidly. However, there are no standardized protocols or harmonized quality assurance and quality control (QA/QC) procedures for SARS-CoV-2 wastewater surveillance. This paper is a technical review of factors that can cause false-positive and false-negative errors in the surveillance of SARS-CoV-2 RNA inwastewater, culminating in recommended strategies that can be implemented to identify and mitigate some of these errors. Recommendations include stringent QA/QC measures, representative samplingapproaches, effective virus concentration and efficient RNA extraction, PCR inhibition assessment, inclusion of sample processing controls, and considerations for RT-PCR assay selection and data interpretation. Clear data interpretation guidelines (e.g., determination of positive and negative samples) are critical, particularlywhen the incidence of SARS-CoV-2 inwastewater is low. Corrective and confirmatory actionsmust be in place for inconclusive results or results diverging fromcurrent trends (e.g., initial onset or reemergence of COVID-19 in a community).It is also prudent to perform interlaboratory comparisons to ensure results´ reliability and interpretability for prospective and retrospective analyses. The strategies that are recommended in this review aim to improve SARS-CoV-2 characterization and detection for wastewater surveillance applications. A silver lining of the COVID-19 pandemic is that the efficacy of wastewater surveillance continues to be demonstrated during this global crisis. In the future, wastewater should also play an important role in the surveillance of a range of other communicable diseases. Fil: Ahmed, Warish. Commonwealth Scientific And Industrial Research Organisation (csiro); Fil: Simpson, Stuart L.. Commonwealth Scientific And Industrial Research Organisation (csiro); Fil: Bertsch, Paul M.. Radboud University Medical Center; Países Bajos Fil: Bibby, Kyle. University of Notre Dame; Estados Unidos Fil: Bivins, Aaron. University of Notre Dame; Estados Unidos Fil: Blackall, Linda L.. University of Melbourne; Australia Fil: Bofill-Mas, Sílvia. Universidad de Barcelona. Facultad de Biología; España Fil: Bosch, Albert. Universidad de Barcelona; España Fil: Brandão, João. Instituto Nacional de Saúde Dr. Ricardo Jorge; Portugal Fil: Choi, Phil M.. The University of Queensland; Australia Fil: Ciesielski, Mark. University of North Carolina; Estados Unidos Fil: Donner, Erica. University Of South Australia; Australia Fil: D'Souza, Nishita. Michigan State University; Estados Unidos Fil: Farnleitner, Andreas H.. Technische Universitat Wien; Austria Fil: Gerrity, Daniel. Southern Nevada Water Authority; Estados Unidos Fil: Gonzalez, Raul. Hampton Roads Sanitation District; Estados Unidos Fil: Griffith, John F.. Southern California Coastal Water Research Project; Estados Unidos Fil: Gyawali, Pradip. Institute Of Environmental Science And Research Ltd; Nueva Zelanda Fil: Haas, Charles N.. Drexel University; Estados Unidos Fil: Hamilton, Kerry A.. Arizona State University; Estados Unidos Fil: Hapuarachchi, Hapuarachchige Chanditha. National Environment Agency; Singapur Fil: Harwood, Valerie J.. University Of South Florida; Estados Unidos Fil: Rajal, Verónica Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones para la Industria Química; Argentina Fil: Jackson, Greg. Health Protection Branch; Australia Fil: Khan, Stuart J.. University of New South Wales; Australia Fil: Wuertz, Stefan. Stellenbosch University; Sudáfrica Fil: Xagoraraki, Irene. Michigan State University; Estados Unidos Fil: Zhang, Qian. University of Minnesota; Estados Unidos Fil: Zimmer Faust, Amity G.. Southern California Coastal Water Research Project; Estados Unidos Fil: Shanks, Orin C.. United States Environmental Protection Agency; Estados Unidos |
description |
Wastewater surveillance for pathogens using reverse transcription-polymerase chain reaction (RT-PCR) is an effective and resource-efficient tool for gathering community-level public health information, including the incidence of coronavirus disease-19 (COVID-19). Surveillance of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) inwastewater can potentially provide an earlywarning signal of COVID-19 infections in a community.The capacity of the world´s environmental microbiology and virology laboratories for SARS-CoV-2 RNA characterization in wastewater is increasing rapidly. However, there are no standardized protocols or harmonized quality assurance and quality control (QA/QC) procedures for SARS-CoV-2 wastewater surveillance. This paper is a technical review of factors that can cause false-positive and false-negative errors in the surveillance of SARS-CoV-2 RNA inwastewater, culminating in recommended strategies that can be implemented to identify and mitigate some of these errors. Recommendations include stringent QA/QC measures, representative samplingapproaches, effective virus concentration and efficient RNA extraction, PCR inhibition assessment, inclusion of sample processing controls, and considerations for RT-PCR assay selection and data interpretation. Clear data interpretation guidelines (e.g., determination of positive and negative samples) are critical, particularlywhen the incidence of SARS-CoV-2 inwastewater is low. Corrective and confirmatory actionsmust be in place for inconclusive results or results diverging fromcurrent trends (e.g., initial onset or reemergence of COVID-19 in a community).It is also prudent to perform interlaboratory comparisons to ensure results´ reliability and interpretability for prospective and retrospective analyses. The strategies that are recommended in this review aim to improve SARS-CoV-2 characterization and detection for wastewater surveillance applications. A silver lining of the COVID-19 pandemic is that the efficacy of wastewater surveillance continues to be demonstrated during this global crisis. In the future, wastewater should also play an important role in the surveillance of a range of other communicable diseases. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-01-20 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/251110 Ahmed, Warish; Simpson, Stuart L.; Bertsch, Paul M.; Bibby, Kyle; Bivins, Aaron; et al.; Minimizing errors in RT-PCR detection and quantification of SARS-CoV-2 RNA for wastewater surveillance; Elsevier; Science of the Total Environment; 805; 149877; 20-1-2022; 1-20 0048-9697 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/251110 |
identifier_str_mv |
Ahmed, Warish; Simpson, Stuart L.; Bertsch, Paul M.; Bibby, Kyle; Bivins, Aaron; et al.; Minimizing errors in RT-PCR detection and quantification of SARS-CoV-2 RNA for wastewater surveillance; Elsevier; Science of the Total Environment; 805; 149877; 20-1-2022; 1-20 0048-9697 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0048969721049524 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.scitotenv.2021.149877 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268748170395648 |
score |
13.13397 |