Crystalline quality, composition homogeneity, tellurium precipitates/inclusions concentration, optical transmission, and energy band gap of bridgman grown single-crystalline cd1−xz...

Autores
Martínez, Ana María; Giudici, Paula; Trigubo, Alicia Beatriz; D'elia, Raul Luis; Heredia, Eduardo Armando; Ramelli, Rodrigo; González, Rubén; Aza, Felipe; Gilabert, Ulises Eduardo
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Cd1−xZnxTe (0 ≤ x ≤ 0.1) ingots were obtained by Bridgman’s method using two different speeds in order to find the optimal conditions for single-crystalline growth. Crystalline quality was studied by chemical etching, the elemental composition by wavelength dispersive spectroscopy (WDS), tellurium (Te) precipitates/inclusions concentration by differential scanning calorimetry (DSC), optical transmission by Fourier transformed infrared spectrometry (FTIR), and band gap energy (Egap) by photoluminescence (PL). It was observed that the ingots grown at a lower speed were those of the best crystalline quality, having at most three grains of different crystallographic orientation. The average dislocations density in all of them were similar and correspond to materials of good quality. EPMA results indicated that the homogeneity in the composition was excellent in the ingots central part. The concentration of Te precipitates/inclusions in all ingots was below the instrument (DSC) detection limit, 0.25% wt/wt. In the case of wafers from Cd0.96Zn0.04Te and Cd0.90Zn0.10Te ingots, the optical transmission was better than that of commercial materials and var-ied between 60% and 70%, while for pure CdTe, the transmission range was between 50% and 55%, the latter being decreased by the presence of Te precipitates/inclusions. The band gap energy Eg of different wafers was experimentally obtained by PL measurements at 76 K. We observed that Eg increased with the Zn concentration of the wafers, following a linear regression comparable to those proposed in the literature, and consistent with the results obtained with other techniques.
Fil: Martínez, Ana María. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; Argentina
Fil: Giudici, Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Constituyentes | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Constituyentes; Argentina
Fil: Trigubo, Alicia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; Argentina
Fil: D'elia, Raul Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; Argentina
Fil: Heredia, Eduardo Armando. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; Argentina
Fil: Ramelli, Rodrigo. Comisión Nacional de Energía Atómica; Argentina
Fil: González, Rubén. Comisión Nacional de Energía Atómica; Argentina
Fil: Aza, Felipe. Secretaría de Industria y Minería. Servicio Geológico Minero Argentino; Argentina
Fil: Gilabert, Ulises Eduardo. Universidad Tecnológica Nacional; Argentina. Secretaría de Industria y Minería. Servicio Geológico Minero Argentino; Argentina
Materia
BRIDGMAN METHOD
CD1−XZNXTE (0 ≤ X ≤ 0.1)
CHEMICAL ETCHING
DSC
EPMA
FTIR
PL
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/215033

id CONICETDig_578981d2b2180d2a1fe79e1c8a4e5313
oai_identifier_str oai:ri.conicet.gov.ar:11336/215033
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Crystalline quality, composition homogeneity, tellurium precipitates/inclusions concentration, optical transmission, and energy band gap of bridgman grown single-crystalline cd1−xznxte (0 ≤ x ≤ 0.1)Martínez, Ana MaríaGiudici, PaulaTrigubo, Alicia BeatrizD'elia, Raul LuisHeredia, Eduardo ArmandoRamelli, RodrigoGonzález, RubénAza, FelipeGilabert, Ulises EduardoBRIDGMAN METHODCD1−XZNXTE (0 ≤ X ≤ 0.1)CHEMICAL ETCHINGDSCEPMAFTIRPLhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Cd1−xZnxTe (0 ≤ x ≤ 0.1) ingots were obtained by Bridgman’s method using two different speeds in order to find the optimal conditions for single-crystalline growth. Crystalline quality was studied by chemical etching, the elemental composition by wavelength dispersive spectroscopy (WDS), tellurium (Te) precipitates/inclusions concentration by differential scanning calorimetry (DSC), optical transmission by Fourier transformed infrared spectrometry (FTIR), and band gap energy (Egap) by photoluminescence (PL). It was observed that the ingots grown at a lower speed were those of the best crystalline quality, having at most three grains of different crystallographic orientation. The average dislocations density in all of them were similar and correspond to materials of good quality. EPMA results indicated that the homogeneity in the composition was excellent in the ingots central part. The concentration of Te precipitates/inclusions in all ingots was below the instrument (DSC) detection limit, 0.25% wt/wt. In the case of wafers from Cd0.96Zn0.04Te and Cd0.90Zn0.10Te ingots, the optical transmission was better than that of commercial materials and var-ied between 60% and 70%, while for pure CdTe, the transmission range was between 50% and 55%, the latter being decreased by the presence of Te precipitates/inclusions. The band gap energy Eg of different wafers was experimentally obtained by PL measurements at 76 K. We observed that Eg increased with the Zn concentration of the wafers, following a linear regression comparable to those proposed in the literature, and consistent with the results obtained with other techniques.Fil: Martínez, Ana María. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; ArgentinaFil: Giudici, Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Constituyentes | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Constituyentes; ArgentinaFil: Trigubo, Alicia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; ArgentinaFil: D'elia, Raul Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; ArgentinaFil: Heredia, Eduardo Armando. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; ArgentinaFil: Ramelli, Rodrigo. Comisión Nacional de Energía Atómica; ArgentinaFil: González, Rubén. Comisión Nacional de Energía Atómica; ArgentinaFil: Aza, Felipe. Secretaría de Industria y Minería. Servicio Geológico Minero Argentino; ArgentinaFil: Gilabert, Ulises Eduardo. Universidad Tecnológica Nacional; Argentina. Secretaría de Industria y Minería. Servicio Geológico Minero Argentino; ArgentinaMDPI2021-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/215033Martínez, Ana María; Giudici, Paula; Trigubo, Alicia Beatriz; D'elia, Raul Luis; Heredia, Eduardo Armando; et al.; Crystalline quality, composition homogeneity, tellurium precipitates/inclusions concentration, optical transmission, and energy band gap of bridgman grown single-crystalline cd1−xznxte (0 ≤ x ≤ 0.1); MDPI; Materials; 14; 15; 8-2021; 1-161996-1944CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1996-1944/14/15/4207info:eu-repo/semantics/altIdentifier/doi/10.3390/ma14154207info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:15:43Zoai:ri.conicet.gov.ar:11336/215033instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:15:44.162CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Crystalline quality, composition homogeneity, tellurium precipitates/inclusions concentration, optical transmission, and energy band gap of bridgman grown single-crystalline cd1−xznxte (0 ≤ x ≤ 0.1)
title Crystalline quality, composition homogeneity, tellurium precipitates/inclusions concentration, optical transmission, and energy band gap of bridgman grown single-crystalline cd1−xznxte (0 ≤ x ≤ 0.1)
spellingShingle Crystalline quality, composition homogeneity, tellurium precipitates/inclusions concentration, optical transmission, and energy band gap of bridgman grown single-crystalline cd1−xznxte (0 ≤ x ≤ 0.1)
Martínez, Ana María
BRIDGMAN METHOD
CD1−XZNXTE (0 ≤ X ≤ 0.1)
CHEMICAL ETCHING
DSC
EPMA
FTIR
PL
title_short Crystalline quality, composition homogeneity, tellurium precipitates/inclusions concentration, optical transmission, and energy band gap of bridgman grown single-crystalline cd1−xznxte (0 ≤ x ≤ 0.1)
title_full Crystalline quality, composition homogeneity, tellurium precipitates/inclusions concentration, optical transmission, and energy band gap of bridgman grown single-crystalline cd1−xznxte (0 ≤ x ≤ 0.1)
title_fullStr Crystalline quality, composition homogeneity, tellurium precipitates/inclusions concentration, optical transmission, and energy band gap of bridgman grown single-crystalline cd1−xznxte (0 ≤ x ≤ 0.1)
title_full_unstemmed Crystalline quality, composition homogeneity, tellurium precipitates/inclusions concentration, optical transmission, and energy band gap of bridgman grown single-crystalline cd1−xznxte (0 ≤ x ≤ 0.1)
title_sort Crystalline quality, composition homogeneity, tellurium precipitates/inclusions concentration, optical transmission, and energy band gap of bridgman grown single-crystalline cd1−xznxte (0 ≤ x ≤ 0.1)
dc.creator.none.fl_str_mv Martínez, Ana María
Giudici, Paula
Trigubo, Alicia Beatriz
D'elia, Raul Luis
Heredia, Eduardo Armando
Ramelli, Rodrigo
González, Rubén
Aza, Felipe
Gilabert, Ulises Eduardo
author Martínez, Ana María
author_facet Martínez, Ana María
Giudici, Paula
Trigubo, Alicia Beatriz
D'elia, Raul Luis
Heredia, Eduardo Armando
Ramelli, Rodrigo
González, Rubén
Aza, Felipe
Gilabert, Ulises Eduardo
author_role author
author2 Giudici, Paula
Trigubo, Alicia Beatriz
D'elia, Raul Luis
Heredia, Eduardo Armando
Ramelli, Rodrigo
González, Rubén
Aza, Felipe
Gilabert, Ulises Eduardo
author2_role author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv BRIDGMAN METHOD
CD1−XZNXTE (0 ≤ X ≤ 0.1)
CHEMICAL ETCHING
DSC
EPMA
FTIR
PL
topic BRIDGMAN METHOD
CD1−XZNXTE (0 ≤ X ≤ 0.1)
CHEMICAL ETCHING
DSC
EPMA
FTIR
PL
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Cd1−xZnxTe (0 ≤ x ≤ 0.1) ingots were obtained by Bridgman’s method using two different speeds in order to find the optimal conditions for single-crystalline growth. Crystalline quality was studied by chemical etching, the elemental composition by wavelength dispersive spectroscopy (WDS), tellurium (Te) precipitates/inclusions concentration by differential scanning calorimetry (DSC), optical transmission by Fourier transformed infrared spectrometry (FTIR), and band gap energy (Egap) by photoluminescence (PL). It was observed that the ingots grown at a lower speed were those of the best crystalline quality, having at most three grains of different crystallographic orientation. The average dislocations density in all of them were similar and correspond to materials of good quality. EPMA results indicated that the homogeneity in the composition was excellent in the ingots central part. The concentration of Te precipitates/inclusions in all ingots was below the instrument (DSC) detection limit, 0.25% wt/wt. In the case of wafers from Cd0.96Zn0.04Te and Cd0.90Zn0.10Te ingots, the optical transmission was better than that of commercial materials and var-ied between 60% and 70%, while for pure CdTe, the transmission range was between 50% and 55%, the latter being decreased by the presence of Te precipitates/inclusions. The band gap energy Eg of different wafers was experimentally obtained by PL measurements at 76 K. We observed that Eg increased with the Zn concentration of the wafers, following a linear regression comparable to those proposed in the literature, and consistent with the results obtained with other techniques.
Fil: Martínez, Ana María. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; Argentina
Fil: Giudici, Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Constituyentes | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Constituyentes; Argentina
Fil: Trigubo, Alicia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; Argentina
Fil: D'elia, Raul Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; Argentina
Fil: Heredia, Eduardo Armando. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; Argentina
Fil: Ramelli, Rodrigo. Comisión Nacional de Energía Atómica; Argentina
Fil: González, Rubén. Comisión Nacional de Energía Atómica; Argentina
Fil: Aza, Felipe. Secretaría de Industria y Minería. Servicio Geológico Minero Argentino; Argentina
Fil: Gilabert, Ulises Eduardo. Universidad Tecnológica Nacional; Argentina. Secretaría de Industria y Minería. Servicio Geológico Minero Argentino; Argentina
description Cd1−xZnxTe (0 ≤ x ≤ 0.1) ingots were obtained by Bridgman’s method using two different speeds in order to find the optimal conditions for single-crystalline growth. Crystalline quality was studied by chemical etching, the elemental composition by wavelength dispersive spectroscopy (WDS), tellurium (Te) precipitates/inclusions concentration by differential scanning calorimetry (DSC), optical transmission by Fourier transformed infrared spectrometry (FTIR), and band gap energy (Egap) by photoluminescence (PL). It was observed that the ingots grown at a lower speed were those of the best crystalline quality, having at most three grains of different crystallographic orientation. The average dislocations density in all of them were similar and correspond to materials of good quality. EPMA results indicated that the homogeneity in the composition was excellent in the ingots central part. The concentration of Te precipitates/inclusions in all ingots was below the instrument (DSC) detection limit, 0.25% wt/wt. In the case of wafers from Cd0.96Zn0.04Te and Cd0.90Zn0.10Te ingots, the optical transmission was better than that of commercial materials and var-ied between 60% and 70%, while for pure CdTe, the transmission range was between 50% and 55%, the latter being decreased by the presence of Te precipitates/inclusions. The band gap energy Eg of different wafers was experimentally obtained by PL measurements at 76 K. We observed that Eg increased with the Zn concentration of the wafers, following a linear regression comparable to those proposed in the literature, and consistent with the results obtained with other techniques.
publishDate 2021
dc.date.none.fl_str_mv 2021-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/215033
Martínez, Ana María; Giudici, Paula; Trigubo, Alicia Beatriz; D'elia, Raul Luis; Heredia, Eduardo Armando; et al.; Crystalline quality, composition homogeneity, tellurium precipitates/inclusions concentration, optical transmission, and energy band gap of bridgman grown single-crystalline cd1−xznxte (0 ≤ x ≤ 0.1); MDPI; Materials; 14; 15; 8-2021; 1-16
1996-1944
CONICET Digital
CONICET
url http://hdl.handle.net/11336/215033
identifier_str_mv Martínez, Ana María; Giudici, Paula; Trigubo, Alicia Beatriz; D'elia, Raul Luis; Heredia, Eduardo Armando; et al.; Crystalline quality, composition homogeneity, tellurium precipitates/inclusions concentration, optical transmission, and energy band gap of bridgman grown single-crystalline cd1−xznxte (0 ≤ x ≤ 0.1); MDPI; Materials; 14; 15; 8-2021; 1-16
1996-1944
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1996-1944/14/15/4207
info:eu-repo/semantics/altIdentifier/doi/10.3390/ma14154207
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980850485952512
score 12.993085