Crystalline quality, composition homogeneity, tellurium precipitates/inclusions concentration, optical transmission, and energy band gap of bridgman grown single-crystalline cd1−xz...
- Autores
- Martínez, Ana María; Giudici, Paula; Trigubo, Alicia Beatriz; D'elia, Raul Luis; Heredia, Eduardo Armando; Ramelli, Rodrigo; González, Rubén; Aza, Felipe; Gilabert, Ulises Eduardo
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Cd1−xZnxTe (0 ≤ x ≤ 0.1) ingots were obtained by Bridgman’s method using two different speeds in order to find the optimal conditions for single-crystalline growth. Crystalline quality was studied by chemical etching, the elemental composition by wavelength dispersive spectroscopy (WDS), tellurium (Te) precipitates/inclusions concentration by differential scanning calorimetry (DSC), optical transmission by Fourier transformed infrared spectrometry (FTIR), and band gap energy (Egap) by photoluminescence (PL). It was observed that the ingots grown at a lower speed were those of the best crystalline quality, having at most three grains of different crystallographic orientation. The average dislocations density in all of them were similar and correspond to materials of good quality. EPMA results indicated that the homogeneity in the composition was excellent in the ingots central part. The concentration of Te precipitates/inclusions in all ingots was below the instrument (DSC) detection limit, 0.25% wt/wt. In the case of wafers from Cd0.96Zn0.04Te and Cd0.90Zn0.10Te ingots, the optical transmission was better than that of commercial materials and var-ied between 60% and 70%, while for pure CdTe, the transmission range was between 50% and 55%, the latter being decreased by the presence of Te precipitates/inclusions. The band gap energy Eg of different wafers was experimentally obtained by PL measurements at 76 K. We observed that Eg increased with the Zn concentration of the wafers, following a linear regression comparable to those proposed in the literature, and consistent with the results obtained with other techniques.
Fil: Martínez, Ana María. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; Argentina
Fil: Giudici, Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Constituyentes | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Constituyentes; Argentina
Fil: Trigubo, Alicia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; Argentina
Fil: D'elia, Raul Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; Argentina
Fil: Heredia, Eduardo Armando. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; Argentina
Fil: Ramelli, Rodrigo. Comisión Nacional de Energía Atómica; Argentina
Fil: González, Rubén. Comisión Nacional de Energía Atómica; Argentina
Fil: Aza, Felipe. Secretaría de Industria y Minería. Servicio Geológico Minero Argentino; Argentina
Fil: Gilabert, Ulises Eduardo. Universidad Tecnológica Nacional; Argentina. Secretaría de Industria y Minería. Servicio Geológico Minero Argentino; Argentina - Materia
-
BRIDGMAN METHOD
CD1−XZNXTE (0 ≤ X ≤ 0.1)
CHEMICAL ETCHING
DSC
EPMA
FTIR
PL - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/215033
Ver los metadatos del registro completo
id |
CONICETDig_578981d2b2180d2a1fe79e1c8a4e5313 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/215033 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Crystalline quality, composition homogeneity, tellurium precipitates/inclusions concentration, optical transmission, and energy band gap of bridgman grown single-crystalline cd1−xznxte (0 ≤ x ≤ 0.1)Martínez, Ana MaríaGiudici, PaulaTrigubo, Alicia BeatrizD'elia, Raul LuisHeredia, Eduardo ArmandoRamelli, RodrigoGonzález, RubénAza, FelipeGilabert, Ulises EduardoBRIDGMAN METHODCD1−XZNXTE (0 ≤ X ≤ 0.1)CHEMICAL ETCHINGDSCEPMAFTIRPLhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Cd1−xZnxTe (0 ≤ x ≤ 0.1) ingots were obtained by Bridgman’s method using two different speeds in order to find the optimal conditions for single-crystalline growth. Crystalline quality was studied by chemical etching, the elemental composition by wavelength dispersive spectroscopy (WDS), tellurium (Te) precipitates/inclusions concentration by differential scanning calorimetry (DSC), optical transmission by Fourier transformed infrared spectrometry (FTIR), and band gap energy (Egap) by photoluminescence (PL). It was observed that the ingots grown at a lower speed were those of the best crystalline quality, having at most three grains of different crystallographic orientation. The average dislocations density in all of them were similar and correspond to materials of good quality. EPMA results indicated that the homogeneity in the composition was excellent in the ingots central part. The concentration of Te precipitates/inclusions in all ingots was below the instrument (DSC) detection limit, 0.25% wt/wt. In the case of wafers from Cd0.96Zn0.04Te and Cd0.90Zn0.10Te ingots, the optical transmission was better than that of commercial materials and var-ied between 60% and 70%, while for pure CdTe, the transmission range was between 50% and 55%, the latter being decreased by the presence of Te precipitates/inclusions. The band gap energy Eg of different wafers was experimentally obtained by PL measurements at 76 K. We observed that Eg increased with the Zn concentration of the wafers, following a linear regression comparable to those proposed in the literature, and consistent with the results obtained with other techniques.Fil: Martínez, Ana María. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; ArgentinaFil: Giudici, Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Constituyentes | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Constituyentes; ArgentinaFil: Trigubo, Alicia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; ArgentinaFil: D'elia, Raul Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; ArgentinaFil: Heredia, Eduardo Armando. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; ArgentinaFil: Ramelli, Rodrigo. Comisión Nacional de Energía Atómica; ArgentinaFil: González, Rubén. Comisión Nacional de Energía Atómica; ArgentinaFil: Aza, Felipe. Secretaría de Industria y Minería. Servicio Geológico Minero Argentino; ArgentinaFil: Gilabert, Ulises Eduardo. Universidad Tecnológica Nacional; Argentina. Secretaría de Industria y Minería. Servicio Geológico Minero Argentino; ArgentinaMDPI2021-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/215033Martínez, Ana María; Giudici, Paula; Trigubo, Alicia Beatriz; D'elia, Raul Luis; Heredia, Eduardo Armando; et al.; Crystalline quality, composition homogeneity, tellurium precipitates/inclusions concentration, optical transmission, and energy band gap of bridgman grown single-crystalline cd1−xznxte (0 ≤ x ≤ 0.1); MDPI; Materials; 14; 15; 8-2021; 1-161996-1944CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1996-1944/14/15/4207info:eu-repo/semantics/altIdentifier/doi/10.3390/ma14154207info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:15:43Zoai:ri.conicet.gov.ar:11336/215033instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:15:44.162CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Crystalline quality, composition homogeneity, tellurium precipitates/inclusions concentration, optical transmission, and energy band gap of bridgman grown single-crystalline cd1−xznxte (0 ≤ x ≤ 0.1) |
title |
Crystalline quality, composition homogeneity, tellurium precipitates/inclusions concentration, optical transmission, and energy band gap of bridgman grown single-crystalline cd1−xznxte (0 ≤ x ≤ 0.1) |
spellingShingle |
Crystalline quality, composition homogeneity, tellurium precipitates/inclusions concentration, optical transmission, and energy band gap of bridgman grown single-crystalline cd1−xznxte (0 ≤ x ≤ 0.1) Martínez, Ana María BRIDGMAN METHOD CD1−XZNXTE (0 ≤ X ≤ 0.1) CHEMICAL ETCHING DSC EPMA FTIR PL |
title_short |
Crystalline quality, composition homogeneity, tellurium precipitates/inclusions concentration, optical transmission, and energy band gap of bridgman grown single-crystalline cd1−xznxte (0 ≤ x ≤ 0.1) |
title_full |
Crystalline quality, composition homogeneity, tellurium precipitates/inclusions concentration, optical transmission, and energy band gap of bridgman grown single-crystalline cd1−xznxte (0 ≤ x ≤ 0.1) |
title_fullStr |
Crystalline quality, composition homogeneity, tellurium precipitates/inclusions concentration, optical transmission, and energy band gap of bridgman grown single-crystalline cd1−xznxte (0 ≤ x ≤ 0.1) |
title_full_unstemmed |
Crystalline quality, composition homogeneity, tellurium precipitates/inclusions concentration, optical transmission, and energy band gap of bridgman grown single-crystalline cd1−xznxte (0 ≤ x ≤ 0.1) |
title_sort |
Crystalline quality, composition homogeneity, tellurium precipitates/inclusions concentration, optical transmission, and energy band gap of bridgman grown single-crystalline cd1−xznxte (0 ≤ x ≤ 0.1) |
dc.creator.none.fl_str_mv |
Martínez, Ana María Giudici, Paula Trigubo, Alicia Beatriz D'elia, Raul Luis Heredia, Eduardo Armando Ramelli, Rodrigo González, Rubén Aza, Felipe Gilabert, Ulises Eduardo |
author |
Martínez, Ana María |
author_facet |
Martínez, Ana María Giudici, Paula Trigubo, Alicia Beatriz D'elia, Raul Luis Heredia, Eduardo Armando Ramelli, Rodrigo González, Rubén Aza, Felipe Gilabert, Ulises Eduardo |
author_role |
author |
author2 |
Giudici, Paula Trigubo, Alicia Beatriz D'elia, Raul Luis Heredia, Eduardo Armando Ramelli, Rodrigo González, Rubén Aza, Felipe Gilabert, Ulises Eduardo |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
BRIDGMAN METHOD CD1−XZNXTE (0 ≤ X ≤ 0.1) CHEMICAL ETCHING DSC EPMA FTIR PL |
topic |
BRIDGMAN METHOD CD1−XZNXTE (0 ≤ X ≤ 0.1) CHEMICAL ETCHING DSC EPMA FTIR PL |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Cd1−xZnxTe (0 ≤ x ≤ 0.1) ingots were obtained by Bridgman’s method using two different speeds in order to find the optimal conditions for single-crystalline growth. Crystalline quality was studied by chemical etching, the elemental composition by wavelength dispersive spectroscopy (WDS), tellurium (Te) precipitates/inclusions concentration by differential scanning calorimetry (DSC), optical transmission by Fourier transformed infrared spectrometry (FTIR), and band gap energy (Egap) by photoluminescence (PL). It was observed that the ingots grown at a lower speed were those of the best crystalline quality, having at most three grains of different crystallographic orientation. The average dislocations density in all of them were similar and correspond to materials of good quality. EPMA results indicated that the homogeneity in the composition was excellent in the ingots central part. The concentration of Te precipitates/inclusions in all ingots was below the instrument (DSC) detection limit, 0.25% wt/wt. In the case of wafers from Cd0.96Zn0.04Te and Cd0.90Zn0.10Te ingots, the optical transmission was better than that of commercial materials and var-ied between 60% and 70%, while for pure CdTe, the transmission range was between 50% and 55%, the latter being decreased by the presence of Te precipitates/inclusions. The band gap energy Eg of different wafers was experimentally obtained by PL measurements at 76 K. We observed that Eg increased with the Zn concentration of the wafers, following a linear regression comparable to those proposed in the literature, and consistent with the results obtained with other techniques. Fil: Martínez, Ana María. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; Argentina Fil: Giudici, Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Constituyentes | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Constituyentes; Argentina Fil: Trigubo, Alicia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; Argentina Fil: D'elia, Raul Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; Argentina Fil: Heredia, Eduardo Armando. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; Argentina Fil: Ramelli, Rodrigo. Comisión Nacional de Energía Atómica; Argentina Fil: González, Rubén. Comisión Nacional de Energía Atómica; Argentina Fil: Aza, Felipe. Secretaría de Industria y Minería. Servicio Geológico Minero Argentino; Argentina Fil: Gilabert, Ulises Eduardo. Universidad Tecnológica Nacional; Argentina. Secretaría de Industria y Minería. Servicio Geológico Minero Argentino; Argentina |
description |
Cd1−xZnxTe (0 ≤ x ≤ 0.1) ingots were obtained by Bridgman’s method using two different speeds in order to find the optimal conditions for single-crystalline growth. Crystalline quality was studied by chemical etching, the elemental composition by wavelength dispersive spectroscopy (WDS), tellurium (Te) precipitates/inclusions concentration by differential scanning calorimetry (DSC), optical transmission by Fourier transformed infrared spectrometry (FTIR), and band gap energy (Egap) by photoluminescence (PL). It was observed that the ingots grown at a lower speed were those of the best crystalline quality, having at most three grains of different crystallographic orientation. The average dislocations density in all of them were similar and correspond to materials of good quality. EPMA results indicated that the homogeneity in the composition was excellent in the ingots central part. The concentration of Te precipitates/inclusions in all ingots was below the instrument (DSC) detection limit, 0.25% wt/wt. In the case of wafers from Cd0.96Zn0.04Te and Cd0.90Zn0.10Te ingots, the optical transmission was better than that of commercial materials and var-ied between 60% and 70%, while for pure CdTe, the transmission range was between 50% and 55%, the latter being decreased by the presence of Te precipitates/inclusions. The band gap energy Eg of different wafers was experimentally obtained by PL measurements at 76 K. We observed that Eg increased with the Zn concentration of the wafers, following a linear regression comparable to those proposed in the literature, and consistent with the results obtained with other techniques. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/215033 Martínez, Ana María; Giudici, Paula; Trigubo, Alicia Beatriz; D'elia, Raul Luis; Heredia, Eduardo Armando; et al.; Crystalline quality, composition homogeneity, tellurium precipitates/inclusions concentration, optical transmission, and energy band gap of bridgman grown single-crystalline cd1−xznxte (0 ≤ x ≤ 0.1); MDPI; Materials; 14; 15; 8-2021; 1-16 1996-1944 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/215033 |
identifier_str_mv |
Martínez, Ana María; Giudici, Paula; Trigubo, Alicia Beatriz; D'elia, Raul Luis; Heredia, Eduardo Armando; et al.; Crystalline quality, composition homogeneity, tellurium precipitates/inclusions concentration, optical transmission, and energy band gap of bridgman grown single-crystalline cd1−xznxte (0 ≤ x ≤ 0.1); MDPI; Materials; 14; 15; 8-2021; 1-16 1996-1944 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1996-1944/14/15/4207 info:eu-repo/semantics/altIdentifier/doi/10.3390/ma14154207 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980850485952512 |
score |
12.993085 |