Multi-lag analysis of symbolic entropies on EEG recordings for distress recognition
- Autores
- Martínez Rodrigo, Arturo; García Martínez, Beatriz; Zunino, Luciano José; Alcaraz, Raúl; Fernández Caballero, Antonio
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Distress is a critical problem in developed societies given its long-term negative effects on physical and mental health. The interest in studying this emotion has notably increased during last years, being electroencephalography (EEG) signals preferred over other physiological variables in this research field. In addition, the non-stationary nature of brain dynamics has impulsed the use of non-linear metrics, such as symbolic entropies in brain signal analysis. Thus, the influence of time-lag on brain patterns assessment has not been tested. Hence, in the present study two permutation entropies denominated Delayed Permutation Entropy and Permutation Min-Entropy have been computed for the first time at different time-lags to discern between emotional states of calmness and distress from EEG signals. Moreover, a number of curve-related features were also calculated to assess brain dynamics across different temporal intervals. Complementary information among these variables was studied through sequential forward selection and 10-fold cross-validation approaches. According to the results obtained, the multi-lag entropy analysis has been able to reveal new significant insights so far undiscovered, thus notably improving the process of distress recognition from EEG recordings.
Fil: Martínez Rodrigo, Arturo. Universidad de Castilla-La Mancha; España
Fil: García Martínez, Beatriz. Universidad de Castilla-La Mancha; España
Fil: Zunino, Luciano José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería; Argentina
Fil: Alcaraz, Raúl. Universidad de Castilla-La Mancha; España
Fil: Fernández Caballero, Antonio. Biomedical Research Networking Centre in Mental Health; España. Universidad de Castilla-La Mancha; España - Materia
-
DELAYED PERMUTATION ENTROPY
DISTRESS
ELECTROENCEPHALOGRAPHY
NON-LINEAR METRICS
PERMUTATION MIN-ENTROPY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/122512
Ver los metadatos del registro completo
id |
CONICETDig_577f246a6e113a3569e9f57f6820835a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/122512 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Multi-lag analysis of symbolic entropies on EEG recordings for distress recognitionMartínez Rodrigo, ArturoGarcía Martínez, BeatrizZunino, Luciano JoséAlcaraz, RaúlFernández Caballero, AntonioDELAYED PERMUTATION ENTROPYDISTRESSELECTROENCEPHALOGRAPHYNON-LINEAR METRICSPERMUTATION MIN-ENTROPYhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Distress is a critical problem in developed societies given its long-term negative effects on physical and mental health. The interest in studying this emotion has notably increased during last years, being electroencephalography (EEG) signals preferred over other physiological variables in this research field. In addition, the non-stationary nature of brain dynamics has impulsed the use of non-linear metrics, such as symbolic entropies in brain signal analysis. Thus, the influence of time-lag on brain patterns assessment has not been tested. Hence, in the present study two permutation entropies denominated Delayed Permutation Entropy and Permutation Min-Entropy have been computed for the first time at different time-lags to discern between emotional states of calmness and distress from EEG signals. Moreover, a number of curve-related features were also calculated to assess brain dynamics across different temporal intervals. Complementary information among these variables was studied through sequential forward selection and 10-fold cross-validation approaches. According to the results obtained, the multi-lag entropy analysis has been able to reveal new significant insights so far undiscovered, thus notably improving the process of distress recognition from EEG recordings.Fil: Martínez Rodrigo, Arturo. Universidad de Castilla-La Mancha; EspañaFil: García Martínez, Beatriz. Universidad de Castilla-La Mancha; EspañaFil: Zunino, Luciano José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería; ArgentinaFil: Alcaraz, Raúl. Universidad de Castilla-La Mancha; EspañaFil: Fernández Caballero, Antonio. Biomedical Research Networking Centre in Mental Health; España. Universidad de Castilla-La Mancha; EspañaFrontiers Media S.A.2019-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/122512Martínez Rodrigo, Arturo; García Martínez, Beatriz; Zunino, Luciano José; Alcaraz, Raúl; Fernández Caballero, Antonio; Multi-lag analysis of symbolic entropies on EEG recordings for distress recognition; Frontiers Media S.A.; Frontiers in Neuroinformatics; 13; 5-2019; 1-151662-5196CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/article/10.3389/fninf.2019.00040/fullinfo:eu-repo/semantics/altIdentifier/doi/10.3389/fninf.2019.00040info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:11:50Zoai:ri.conicet.gov.ar:11336/122512instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:11:50.974CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Multi-lag analysis of symbolic entropies on EEG recordings for distress recognition |
title |
Multi-lag analysis of symbolic entropies on EEG recordings for distress recognition |
spellingShingle |
Multi-lag analysis of symbolic entropies on EEG recordings for distress recognition Martínez Rodrigo, Arturo DELAYED PERMUTATION ENTROPY DISTRESS ELECTROENCEPHALOGRAPHY NON-LINEAR METRICS PERMUTATION MIN-ENTROPY |
title_short |
Multi-lag analysis of symbolic entropies on EEG recordings for distress recognition |
title_full |
Multi-lag analysis of symbolic entropies on EEG recordings for distress recognition |
title_fullStr |
Multi-lag analysis of symbolic entropies on EEG recordings for distress recognition |
title_full_unstemmed |
Multi-lag analysis of symbolic entropies on EEG recordings for distress recognition |
title_sort |
Multi-lag analysis of symbolic entropies on EEG recordings for distress recognition |
dc.creator.none.fl_str_mv |
Martínez Rodrigo, Arturo García Martínez, Beatriz Zunino, Luciano José Alcaraz, Raúl Fernández Caballero, Antonio |
author |
Martínez Rodrigo, Arturo |
author_facet |
Martínez Rodrigo, Arturo García Martínez, Beatriz Zunino, Luciano José Alcaraz, Raúl Fernández Caballero, Antonio |
author_role |
author |
author2 |
García Martínez, Beatriz Zunino, Luciano José Alcaraz, Raúl Fernández Caballero, Antonio |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
DELAYED PERMUTATION ENTROPY DISTRESS ELECTROENCEPHALOGRAPHY NON-LINEAR METRICS PERMUTATION MIN-ENTROPY |
topic |
DELAYED PERMUTATION ENTROPY DISTRESS ELECTROENCEPHALOGRAPHY NON-LINEAR METRICS PERMUTATION MIN-ENTROPY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Distress is a critical problem in developed societies given its long-term negative effects on physical and mental health. The interest in studying this emotion has notably increased during last years, being electroencephalography (EEG) signals preferred over other physiological variables in this research field. In addition, the non-stationary nature of brain dynamics has impulsed the use of non-linear metrics, such as symbolic entropies in brain signal analysis. Thus, the influence of time-lag on brain patterns assessment has not been tested. Hence, in the present study two permutation entropies denominated Delayed Permutation Entropy and Permutation Min-Entropy have been computed for the first time at different time-lags to discern between emotional states of calmness and distress from EEG signals. Moreover, a number of curve-related features were also calculated to assess brain dynamics across different temporal intervals. Complementary information among these variables was studied through sequential forward selection and 10-fold cross-validation approaches. According to the results obtained, the multi-lag entropy analysis has been able to reveal new significant insights so far undiscovered, thus notably improving the process of distress recognition from EEG recordings. Fil: Martínez Rodrigo, Arturo. Universidad de Castilla-La Mancha; España Fil: García Martínez, Beatriz. Universidad de Castilla-La Mancha; España Fil: Zunino, Luciano José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería; Argentina Fil: Alcaraz, Raúl. Universidad de Castilla-La Mancha; España Fil: Fernández Caballero, Antonio. Biomedical Research Networking Centre in Mental Health; España. Universidad de Castilla-La Mancha; España |
description |
Distress is a critical problem in developed societies given its long-term negative effects on physical and mental health. The interest in studying this emotion has notably increased during last years, being electroencephalography (EEG) signals preferred over other physiological variables in this research field. In addition, the non-stationary nature of brain dynamics has impulsed the use of non-linear metrics, such as symbolic entropies in brain signal analysis. Thus, the influence of time-lag on brain patterns assessment has not been tested. Hence, in the present study two permutation entropies denominated Delayed Permutation Entropy and Permutation Min-Entropy have been computed for the first time at different time-lags to discern between emotional states of calmness and distress from EEG signals. Moreover, a number of curve-related features were also calculated to assess brain dynamics across different temporal intervals. Complementary information among these variables was studied through sequential forward selection and 10-fold cross-validation approaches. According to the results obtained, the multi-lag entropy analysis has been able to reveal new significant insights so far undiscovered, thus notably improving the process of distress recognition from EEG recordings. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/122512 Martínez Rodrigo, Arturo; García Martínez, Beatriz; Zunino, Luciano José; Alcaraz, Raúl; Fernández Caballero, Antonio; Multi-lag analysis of symbolic entropies on EEG recordings for distress recognition; Frontiers Media S.A.; Frontiers in Neuroinformatics; 13; 5-2019; 1-15 1662-5196 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/122512 |
identifier_str_mv |
Martínez Rodrigo, Arturo; García Martínez, Beatriz; Zunino, Luciano José; Alcaraz, Raúl; Fernández Caballero, Antonio; Multi-lag analysis of symbolic entropies on EEG recordings for distress recognition; Frontiers Media S.A.; Frontiers in Neuroinformatics; 13; 5-2019; 1-15 1662-5196 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/article/10.3389/fninf.2019.00040/full info:eu-repo/semantics/altIdentifier/doi/10.3389/fninf.2019.00040 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Frontiers Media S.A. |
publisher.none.fl_str_mv |
Frontiers Media S.A. |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270172834955264 |
score |
13.13397 |