BeEP Server: using evolutionary information for quality assessment of protein structure models
- Autores
- Palopoli, Nicolás; Lanzarotti, Esteban Omar; Parisi, Gustavo Daniel
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The BeEP Server (http://www.embnet.qb.fcen.uba.ar/embnet/beep.php) is an online resource aimed to help in the endgame of protein structure prediction. It is able to rank submitted structural models of a protein through an explicit use of evolutionary information, a criterion differing from structural or energetic considerations commonly used in other assessment programs. The idea behind BeEP (Best Evolutionary Pattern) is to benefit from the substitution pattern derived from structural constraints present in a set of homologous proteins adopting a given protein conformation. The BeEP method uses a model of protein evolution that takes into account the structure of a protein to build site-specific substitution matrices. The suitability of these substitution matrices is assessed through maximum likelihood calculations from which position-specific and global scores can be derived. These scores estimate how well the structural constraints derived from each structural model are represented in a sequence alignment of homologous proteins. Our assessment on a subset of proteins from the Critical Assessment of techniques for protein Structure Prediction (CASP) experiment has shown that BeEP is capable of discriminating the models and selecting one or more native-like structures. Moreover, BeEP is not explicitly parameterized to find structural similarities between models and given targets, potentially helping to explore the conformational ensemble of the native state.
Fil: Palopoli, Nicolás. University of Southampton; Reino Unido. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina
Fil: Lanzarotti, Esteban Omar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Parisi, Gustavo Daniel. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
STRUCTURAL BIOINFORMATICS
PROTEIN STRUCTURE VALIDATION
EVOLUTIONARY INFORMATION
WEB SERVER - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/104016
Ver los metadatos del registro completo
id |
CONICETDig_571a7e6072087f837e80d7f8e348ebe4 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/104016 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
BeEP Server: using evolutionary information for quality assessment of protein structure modelsPalopoli, NicolásLanzarotti, Esteban OmarParisi, Gustavo DanielSTRUCTURAL BIOINFORMATICSPROTEIN STRUCTURE VALIDATIONEVOLUTIONARY INFORMATIONWEB SERVERhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1The BeEP Server (http://www.embnet.qb.fcen.uba.ar/embnet/beep.php) is an online resource aimed to help in the endgame of protein structure prediction. It is able to rank submitted structural models of a protein through an explicit use of evolutionary information, a criterion differing from structural or energetic considerations commonly used in other assessment programs. The idea behind BeEP (Best Evolutionary Pattern) is to benefit from the substitution pattern derived from structural constraints present in a set of homologous proteins adopting a given protein conformation. The BeEP method uses a model of protein evolution that takes into account the structure of a protein to build site-specific substitution matrices. The suitability of these substitution matrices is assessed through maximum likelihood calculations from which position-specific and global scores can be derived. These scores estimate how well the structural constraints derived from each structural model are represented in a sequence alignment of homologous proteins. Our assessment on a subset of proteins from the Critical Assessment of techniques for protein Structure Prediction (CASP) experiment has shown that BeEP is capable of discriminating the models and selecting one or more native-like structures. Moreover, BeEP is not explicitly parameterized to find structural similarities between models and given targets, potentially helping to explore the conformational ensemble of the native state.Fil: Palopoli, Nicolás. University of Southampton; Reino Unido. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; ArgentinaFil: Lanzarotti, Esteban Omar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Parisi, Gustavo Daniel. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaOxford University Press2013-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/104016Palopoli, Nicolás; Lanzarotti, Esteban Omar; Parisi, Gustavo Daniel; BeEP Server: using evolutionary information for quality assessment of protein structure models; Oxford University Press; Nucleic Acids Research; 41; W1; 7-2013; W398-W4050305-10481362-4962CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://nar.oxfordjournals.org/content/41/W1/W398info:eu-repo/semantics/altIdentifier/doi/10.1093/nar/gkt453info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:45:24Zoai:ri.conicet.gov.ar:11336/104016instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:45:24.31CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
BeEP Server: using evolutionary information for quality assessment of protein structure models |
title |
BeEP Server: using evolutionary information for quality assessment of protein structure models |
spellingShingle |
BeEP Server: using evolutionary information for quality assessment of protein structure models Palopoli, Nicolás STRUCTURAL BIOINFORMATICS PROTEIN STRUCTURE VALIDATION EVOLUTIONARY INFORMATION WEB SERVER |
title_short |
BeEP Server: using evolutionary information for quality assessment of protein structure models |
title_full |
BeEP Server: using evolutionary information for quality assessment of protein structure models |
title_fullStr |
BeEP Server: using evolutionary information for quality assessment of protein structure models |
title_full_unstemmed |
BeEP Server: using evolutionary information for quality assessment of protein structure models |
title_sort |
BeEP Server: using evolutionary information for quality assessment of protein structure models |
dc.creator.none.fl_str_mv |
Palopoli, Nicolás Lanzarotti, Esteban Omar Parisi, Gustavo Daniel |
author |
Palopoli, Nicolás |
author_facet |
Palopoli, Nicolás Lanzarotti, Esteban Omar Parisi, Gustavo Daniel |
author_role |
author |
author2 |
Lanzarotti, Esteban Omar Parisi, Gustavo Daniel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
STRUCTURAL BIOINFORMATICS PROTEIN STRUCTURE VALIDATION EVOLUTIONARY INFORMATION WEB SERVER |
topic |
STRUCTURAL BIOINFORMATICS PROTEIN STRUCTURE VALIDATION EVOLUTIONARY INFORMATION WEB SERVER |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The BeEP Server (http://www.embnet.qb.fcen.uba.ar/embnet/beep.php) is an online resource aimed to help in the endgame of protein structure prediction. It is able to rank submitted structural models of a protein through an explicit use of evolutionary information, a criterion differing from structural or energetic considerations commonly used in other assessment programs. The idea behind BeEP (Best Evolutionary Pattern) is to benefit from the substitution pattern derived from structural constraints present in a set of homologous proteins adopting a given protein conformation. The BeEP method uses a model of protein evolution that takes into account the structure of a protein to build site-specific substitution matrices. The suitability of these substitution matrices is assessed through maximum likelihood calculations from which position-specific and global scores can be derived. These scores estimate how well the structural constraints derived from each structural model are represented in a sequence alignment of homologous proteins. Our assessment on a subset of proteins from the Critical Assessment of techniques for protein Structure Prediction (CASP) experiment has shown that BeEP is capable of discriminating the models and selecting one or more native-like structures. Moreover, BeEP is not explicitly parameterized to find structural similarities between models and given targets, potentially helping to explore the conformational ensemble of the native state. Fil: Palopoli, Nicolás. University of Southampton; Reino Unido. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina Fil: Lanzarotti, Esteban Omar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Parisi, Gustavo Daniel. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
The BeEP Server (http://www.embnet.qb.fcen.uba.ar/embnet/beep.php) is an online resource aimed to help in the endgame of protein structure prediction. It is able to rank submitted structural models of a protein through an explicit use of evolutionary information, a criterion differing from structural or energetic considerations commonly used in other assessment programs. The idea behind BeEP (Best Evolutionary Pattern) is to benefit from the substitution pattern derived from structural constraints present in a set of homologous proteins adopting a given protein conformation. The BeEP method uses a model of protein evolution that takes into account the structure of a protein to build site-specific substitution matrices. The suitability of these substitution matrices is assessed through maximum likelihood calculations from which position-specific and global scores can be derived. These scores estimate how well the structural constraints derived from each structural model are represented in a sequence alignment of homologous proteins. Our assessment on a subset of proteins from the Critical Assessment of techniques for protein Structure Prediction (CASP) experiment has shown that BeEP is capable of discriminating the models and selecting one or more native-like structures. Moreover, BeEP is not explicitly parameterized to find structural similarities between models and given targets, potentially helping to explore the conformational ensemble of the native state. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/104016 Palopoli, Nicolás; Lanzarotti, Esteban Omar; Parisi, Gustavo Daniel; BeEP Server: using evolutionary information for quality assessment of protein structure models; Oxford University Press; Nucleic Acids Research; 41; W1; 7-2013; W398-W405 0305-1048 1362-4962 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/104016 |
identifier_str_mv |
Palopoli, Nicolás; Lanzarotti, Esteban Omar; Parisi, Gustavo Daniel; BeEP Server: using evolutionary information for quality assessment of protein structure models; Oxford University Press; Nucleic Acids Research; 41; W1; 7-2013; W398-W405 0305-1048 1362-4962 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://nar.oxfordjournals.org/content/41/W1/W398 info:eu-repo/semantics/altIdentifier/doi/10.1093/nar/gkt453 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Oxford University Press |
publisher.none.fl_str_mv |
Oxford University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613424081797120 |
score |
13.070432 |