Signals of strong electronic correlation in ion scattering processes

Autores
Bonetto, Fernando Jose; Gonzalez, C.; Goldberg, Edith Catalina
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Previous measurements of neutral atom fractions for Sr+ scattered by gold polycrystalline surfaces show a singular dependence with the target temperature. There is still not a theoretical model that can properly describe the magnitude and the temperature dependence of the neutralization probabilities found. Here, we applied a first-principles quantum-mechanical theoretical formalism to describe the time-dependent scattering process. Three different electronic correlation approaches consistent with the system analyzed are used: (i) the spinless approach, where two charge channels are considered (Sr0 and Sr+) and the spin degeneration is neglected; (ii) the infinite-U approach, with the same charge channels (Sr0 and Sr+) but considering the spin degeneration; and (iii) the finite-U approach, where the first ionization and second ionization energy levels are considered very, but finitely, separated. Neutral fraction magnitudes and temperature dependence are better described by the finite-U approach, indicating that e-correlation plays a significant role in charge-transfer processes. However, none of them is able to explain the nonmonotonous temperature dependence experimentally obtained. Here, we suggest that small changes in the surface work function introduced by the target heating, and possibly not detected by experimental standard methods, could be responsible for that singular behavior. Additionally, we apply the same theoretical model using the infinite-U approximation for the Mg-Au system, obtaining an excellent description of the experimental neutral fractions measured.
Fil: Bonetto, Fernando Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; Argentina
Fil: Gonzalez, C.. Facultad de Ciencias. Universidad de Granada.; España
Fil: Goldberg, Edith Catalina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; Argentina
Materia
ION SCATTERING
ELECTRONIC CORRELATION
NEUTRALIZATiON
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/116215

id CONICETDig_56c2a72768147d2e315d7d352d86bc67
oai_identifier_str oai:ri.conicet.gov.ar:11336/116215
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Signals of strong electronic correlation in ion scattering processesBonetto, Fernando JoseGonzalez, C.Goldberg, Edith CatalinaION SCATTERINGELECTRONIC CORRELATIONNEUTRALIZATiONhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Previous measurements of neutral atom fractions for Sr+ scattered by gold polycrystalline surfaces show a singular dependence with the target temperature. There is still not a theoretical model that can properly describe the magnitude and the temperature dependence of the neutralization probabilities found. Here, we applied a first-principles quantum-mechanical theoretical formalism to describe the time-dependent scattering process. Three different electronic correlation approaches consistent with the system analyzed are used: (i) the spinless approach, where two charge channels are considered (Sr0 and Sr+) and the spin degeneration is neglected; (ii) the infinite-U approach, with the same charge channels (Sr0 and Sr+) but considering the spin degeneration; and (iii) the finite-U approach, where the first ionization and second ionization energy levels are considered very, but finitely, separated. Neutral fraction magnitudes and temperature dependence are better described by the finite-U approach, indicating that e-correlation plays a significant role in charge-transfer processes. However, none of them is able to explain the nonmonotonous temperature dependence experimentally obtained. Here, we suggest that small changes in the surface work function introduced by the target heating, and possibly not detected by experimental standard methods, could be responsible for that singular behavior. Additionally, we apply the same theoretical model using the infinite-U approximation for the Mg-Au system, obtaining an excellent description of the experimental neutral fractions measured.Fil: Bonetto, Fernando Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; ArgentinaFil: Gonzalez, C.. Facultad de Ciencias. Universidad de Granada.; EspañaFil: Goldberg, Edith Catalina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; ArgentinaAmerican Physical Society2016-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/116215Bonetto, Fernando Jose; Gonzalez, C.; Goldberg, Edith Catalina; Signals of strong electronic correlation in ion scattering processes; American Physical Society; Physical Review B; 93; 19; 5-2016; 1954391-19543992469-9969CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.93.195439info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:38Zoai:ri.conicet.gov.ar:11336/116215instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:38.634CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Signals of strong electronic correlation in ion scattering processes
title Signals of strong electronic correlation in ion scattering processes
spellingShingle Signals of strong electronic correlation in ion scattering processes
Bonetto, Fernando Jose
ION SCATTERING
ELECTRONIC CORRELATION
NEUTRALIZATiON
title_short Signals of strong electronic correlation in ion scattering processes
title_full Signals of strong electronic correlation in ion scattering processes
title_fullStr Signals of strong electronic correlation in ion scattering processes
title_full_unstemmed Signals of strong electronic correlation in ion scattering processes
title_sort Signals of strong electronic correlation in ion scattering processes
dc.creator.none.fl_str_mv Bonetto, Fernando Jose
Gonzalez, C.
Goldberg, Edith Catalina
author Bonetto, Fernando Jose
author_facet Bonetto, Fernando Jose
Gonzalez, C.
Goldberg, Edith Catalina
author_role author
author2 Gonzalez, C.
Goldberg, Edith Catalina
author2_role author
author
dc.subject.none.fl_str_mv ION SCATTERING
ELECTRONIC CORRELATION
NEUTRALIZATiON
topic ION SCATTERING
ELECTRONIC CORRELATION
NEUTRALIZATiON
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Previous measurements of neutral atom fractions for Sr+ scattered by gold polycrystalline surfaces show a singular dependence with the target temperature. There is still not a theoretical model that can properly describe the magnitude and the temperature dependence of the neutralization probabilities found. Here, we applied a first-principles quantum-mechanical theoretical formalism to describe the time-dependent scattering process. Three different electronic correlation approaches consistent with the system analyzed are used: (i) the spinless approach, where two charge channels are considered (Sr0 and Sr+) and the spin degeneration is neglected; (ii) the infinite-U approach, with the same charge channels (Sr0 and Sr+) but considering the spin degeneration; and (iii) the finite-U approach, where the first ionization and second ionization energy levels are considered very, but finitely, separated. Neutral fraction magnitudes and temperature dependence are better described by the finite-U approach, indicating that e-correlation plays a significant role in charge-transfer processes. However, none of them is able to explain the nonmonotonous temperature dependence experimentally obtained. Here, we suggest that small changes in the surface work function introduced by the target heating, and possibly not detected by experimental standard methods, could be responsible for that singular behavior. Additionally, we apply the same theoretical model using the infinite-U approximation for the Mg-Au system, obtaining an excellent description of the experimental neutral fractions measured.
Fil: Bonetto, Fernando Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; Argentina
Fil: Gonzalez, C.. Facultad de Ciencias. Universidad de Granada.; España
Fil: Goldberg, Edith Catalina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; Argentina
description Previous measurements of neutral atom fractions for Sr+ scattered by gold polycrystalline surfaces show a singular dependence with the target temperature. There is still not a theoretical model that can properly describe the magnitude and the temperature dependence of the neutralization probabilities found. Here, we applied a first-principles quantum-mechanical theoretical formalism to describe the time-dependent scattering process. Three different electronic correlation approaches consistent with the system analyzed are used: (i) the spinless approach, where two charge channels are considered (Sr0 and Sr+) and the spin degeneration is neglected; (ii) the infinite-U approach, with the same charge channels (Sr0 and Sr+) but considering the spin degeneration; and (iii) the finite-U approach, where the first ionization and second ionization energy levels are considered very, but finitely, separated. Neutral fraction magnitudes and temperature dependence are better described by the finite-U approach, indicating that e-correlation plays a significant role in charge-transfer processes. However, none of them is able to explain the nonmonotonous temperature dependence experimentally obtained. Here, we suggest that small changes in the surface work function introduced by the target heating, and possibly not detected by experimental standard methods, could be responsible for that singular behavior. Additionally, we apply the same theoretical model using the infinite-U approximation for the Mg-Au system, obtaining an excellent description of the experimental neutral fractions measured.
publishDate 2016
dc.date.none.fl_str_mv 2016-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/116215
Bonetto, Fernando Jose; Gonzalez, C.; Goldberg, Edith Catalina; Signals of strong electronic correlation in ion scattering processes; American Physical Society; Physical Review B; 93; 19; 5-2016; 1954391-1954399
2469-9969
CONICET Digital
CONICET
url http://hdl.handle.net/11336/116215
identifier_str_mv Bonetto, Fernando Jose; Gonzalez, C.; Goldberg, Edith Catalina; Signals of strong electronic correlation in ion scattering processes; American Physical Society; Physical Review B; 93; 19; 5-2016; 1954391-1954399
2469-9969
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.93.195439
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268872677261312
score 13.13397