A framework for studying behavioral evolution by reconstructing ancestral repertoires

Autores
Hernández Lahme, Damián Gabriel; Rivera, Catalina; Cande, Jessica; Zhou, Baohua; Stern, David L.; Berman, Gordon J.
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Although different animal species often exhibit extensive variation in many behaviors, typically scientists examine one or a small number of behaviors in any single study. Here, we propose a new framework to simultaneously study the evolution of many behaviors. We measured the behavioral repertoire of individuals from six species of fruit flies using unsupervised techniques and identified all stereotyped movements exhibited by each species. We then fit a Generalized Linear Mixed Model to estimate the intra-and inter-species behavioral covariances, and, by using the known phylogenetic relationships among species, we estimated the (unobserved) behaviors exhibited by ancestral species. We found that much of intra-specific behavioral variation has a similar covariance structure to previously described long-time scale variation in an individual’s behavior, suggesting that much of the measured variation between individuals of a single species in our assay reflects differences in the status of neural networks, rather than genetic or developmental differences between individuals. We then propose a method to identify groups of behaviors that appear to have evolved in a correlated manner, illustrating how sets of behaviors, rather than individual behaviors, likely evolved. Our approach provides a new framework for identifying co-evolving behaviors and may provide new opportunities to study the mechanistic basis of behavioral evolution.
Fil: Hernández Lahme, Damián Gabriel. University of Emory; Estados Unidos. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Rivera, Catalina. University of Emory; Estados Unidos
Fil: Cande, Jessica. Howard Hughes Medical Institute; Estados Unidos
Fil: Zhou, Baohua. University of Yale; Estados Unidos. University of Emory; Estados Unidos
Fil: Stern, David L.. Howard Hughes Medical Institute; Estados Unidos
Fil: Berman, Gordon J.. University of Emory; Estados Unidos
Materia
behavior
evolution
variation
Drosophila
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/167556

id CONICETDig_56a95130ae29cfb22f93b2a8b19ebbe6
oai_identifier_str oai:ri.conicet.gov.ar:11336/167556
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A framework for studying behavioral evolution by reconstructing ancestral repertoiresHernández Lahme, Damián GabrielRivera, CatalinaCande, JessicaZhou, BaohuaStern, David L.Berman, Gordon J.behaviorevolutionvariationDrosophilahttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Although different animal species often exhibit extensive variation in many behaviors, typically scientists examine one or a small number of behaviors in any single study. Here, we propose a new framework to simultaneously study the evolution of many behaviors. We measured the behavioral repertoire of individuals from six species of fruit flies using unsupervised techniques and identified all stereotyped movements exhibited by each species. We then fit a Generalized Linear Mixed Model to estimate the intra-and inter-species behavioral covariances, and, by using the known phylogenetic relationships among species, we estimated the (unobserved) behaviors exhibited by ancestral species. We found that much of intra-specific behavioral variation has a similar covariance structure to previously described long-time scale variation in an individual’s behavior, suggesting that much of the measured variation between individuals of a single species in our assay reflects differences in the status of neural networks, rather than genetic or developmental differences between individuals. We then propose a method to identify groups of behaviors that appear to have evolved in a correlated manner, illustrating how sets of behaviors, rather than individual behaviors, likely evolved. Our approach provides a new framework for identifying co-evolving behaviors and may provide new opportunities to study the mechanistic basis of behavioral evolution.Fil: Hernández Lahme, Damián Gabriel. University of Emory; Estados Unidos. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Rivera, Catalina. University of Emory; Estados UnidosFil: Cande, Jessica. Howard Hughes Medical Institute; Estados UnidosFil: Zhou, Baohua. University of Yale; Estados Unidos. University of Emory; Estados UnidosFil: Stern, David L.. Howard Hughes Medical Institute; Estados UnidosFil: Berman, Gordon J.. University of Emory; Estados UnidoseLife Sciences2021-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/167556Hernández Lahme, Damián Gabriel; Rivera, Catalina; Cande, Jessica; Zhou, Baohua; Stern, David L.; et al.; A framework for studying behavioral evolution by reconstructing ancestral repertoires; eLife Sciences; eLife; 10; 9-2021; 1-192050-084XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://elifesciences.org/articles/61806info:eu-repo/semantics/altIdentifier/doi/10.7554/eLife.61806info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:03:42Zoai:ri.conicet.gov.ar:11336/167556instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:03:42.644CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A framework for studying behavioral evolution by reconstructing ancestral repertoires
title A framework for studying behavioral evolution by reconstructing ancestral repertoires
spellingShingle A framework for studying behavioral evolution by reconstructing ancestral repertoires
Hernández Lahme, Damián Gabriel
behavior
evolution
variation
Drosophila
title_short A framework for studying behavioral evolution by reconstructing ancestral repertoires
title_full A framework for studying behavioral evolution by reconstructing ancestral repertoires
title_fullStr A framework for studying behavioral evolution by reconstructing ancestral repertoires
title_full_unstemmed A framework for studying behavioral evolution by reconstructing ancestral repertoires
title_sort A framework for studying behavioral evolution by reconstructing ancestral repertoires
dc.creator.none.fl_str_mv Hernández Lahme, Damián Gabriel
Rivera, Catalina
Cande, Jessica
Zhou, Baohua
Stern, David L.
Berman, Gordon J.
author Hernández Lahme, Damián Gabriel
author_facet Hernández Lahme, Damián Gabriel
Rivera, Catalina
Cande, Jessica
Zhou, Baohua
Stern, David L.
Berman, Gordon J.
author_role author
author2 Rivera, Catalina
Cande, Jessica
Zhou, Baohua
Stern, David L.
Berman, Gordon J.
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv behavior
evolution
variation
Drosophila
topic behavior
evolution
variation
Drosophila
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Although different animal species often exhibit extensive variation in many behaviors, typically scientists examine one or a small number of behaviors in any single study. Here, we propose a new framework to simultaneously study the evolution of many behaviors. We measured the behavioral repertoire of individuals from six species of fruit flies using unsupervised techniques and identified all stereotyped movements exhibited by each species. We then fit a Generalized Linear Mixed Model to estimate the intra-and inter-species behavioral covariances, and, by using the known phylogenetic relationships among species, we estimated the (unobserved) behaviors exhibited by ancestral species. We found that much of intra-specific behavioral variation has a similar covariance structure to previously described long-time scale variation in an individual’s behavior, suggesting that much of the measured variation between individuals of a single species in our assay reflects differences in the status of neural networks, rather than genetic or developmental differences between individuals. We then propose a method to identify groups of behaviors that appear to have evolved in a correlated manner, illustrating how sets of behaviors, rather than individual behaviors, likely evolved. Our approach provides a new framework for identifying co-evolving behaviors and may provide new opportunities to study the mechanistic basis of behavioral evolution.
Fil: Hernández Lahme, Damián Gabriel. University of Emory; Estados Unidos. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Rivera, Catalina. University of Emory; Estados Unidos
Fil: Cande, Jessica. Howard Hughes Medical Institute; Estados Unidos
Fil: Zhou, Baohua. University of Yale; Estados Unidos. University of Emory; Estados Unidos
Fil: Stern, David L.. Howard Hughes Medical Institute; Estados Unidos
Fil: Berman, Gordon J.. University of Emory; Estados Unidos
description Although different animal species often exhibit extensive variation in many behaviors, typically scientists examine one or a small number of behaviors in any single study. Here, we propose a new framework to simultaneously study the evolution of many behaviors. We measured the behavioral repertoire of individuals from six species of fruit flies using unsupervised techniques and identified all stereotyped movements exhibited by each species. We then fit a Generalized Linear Mixed Model to estimate the intra-and inter-species behavioral covariances, and, by using the known phylogenetic relationships among species, we estimated the (unobserved) behaviors exhibited by ancestral species. We found that much of intra-specific behavioral variation has a similar covariance structure to previously described long-time scale variation in an individual’s behavior, suggesting that much of the measured variation between individuals of a single species in our assay reflects differences in the status of neural networks, rather than genetic or developmental differences between individuals. We then propose a method to identify groups of behaviors that appear to have evolved in a correlated manner, illustrating how sets of behaviors, rather than individual behaviors, likely evolved. Our approach provides a new framework for identifying co-evolving behaviors and may provide new opportunities to study the mechanistic basis of behavioral evolution.
publishDate 2021
dc.date.none.fl_str_mv 2021-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/167556
Hernández Lahme, Damián Gabriel; Rivera, Catalina; Cande, Jessica; Zhou, Baohua; Stern, David L.; et al.; A framework for studying behavioral evolution by reconstructing ancestral repertoires; eLife Sciences; eLife; 10; 9-2021; 1-19
2050-084X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/167556
identifier_str_mv Hernández Lahme, Damián Gabriel; Rivera, Catalina; Cande, Jessica; Zhou, Baohua; Stern, David L.; et al.; A framework for studying behavioral evolution by reconstructing ancestral repertoires; eLife Sciences; eLife; 10; 9-2021; 1-19
2050-084X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://elifesciences.org/articles/61806
info:eu-repo/semantics/altIdentifier/doi/10.7554/eLife.61806
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv eLife Sciences
publisher.none.fl_str_mv eLife Sciences
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781276112027648
score 12.982451