A framework for studying behavioral evolution by reconstructing ancestral repertoires
- Autores
- Hernández Lahme, Damián Gabriel; Rivera, Catalina; Cande, Jessica; Zhou, Baohua; Stern, David L.; Berman, Gordon J.
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Although different animal species often exhibit extensive variation in many behaviors, typically scientists examine one or a small number of behaviors in any single study. Here, we propose a new framework to simultaneously study the evolution of many behaviors. We measured the behavioral repertoire of individuals from six species of fruit flies using unsupervised techniques and identified all stereotyped movements exhibited by each species. We then fit a Generalized Linear Mixed Model to estimate the intra-and inter-species behavioral covariances, and, by using the known phylogenetic relationships among species, we estimated the (unobserved) behaviors exhibited by ancestral species. We found that much of intra-specific behavioral variation has a similar covariance structure to previously described long-time scale variation in an individual’s behavior, suggesting that much of the measured variation between individuals of a single species in our assay reflects differences in the status of neural networks, rather than genetic or developmental differences between individuals. We then propose a method to identify groups of behaviors that appear to have evolved in a correlated manner, illustrating how sets of behaviors, rather than individual behaviors, likely evolved. Our approach provides a new framework for identifying co-evolving behaviors and may provide new opportunities to study the mechanistic basis of behavioral evolution.
Fil: Hernández Lahme, Damián Gabriel. University of Emory; Estados Unidos. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Rivera, Catalina. University of Emory; Estados Unidos
Fil: Cande, Jessica. Howard Hughes Medical Institute; Estados Unidos
Fil: Zhou, Baohua. University of Yale; Estados Unidos. University of Emory; Estados Unidos
Fil: Stern, David L.. Howard Hughes Medical Institute; Estados Unidos
Fil: Berman, Gordon J.. University of Emory; Estados Unidos - Materia
-
behavior
evolution
variation
Drosophila - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/167556
Ver los metadatos del registro completo
id |
CONICETDig_56a95130ae29cfb22f93b2a8b19ebbe6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/167556 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A framework for studying behavioral evolution by reconstructing ancestral repertoiresHernández Lahme, Damián GabrielRivera, CatalinaCande, JessicaZhou, BaohuaStern, David L.Berman, Gordon J.behaviorevolutionvariationDrosophilahttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Although different animal species often exhibit extensive variation in many behaviors, typically scientists examine one or a small number of behaviors in any single study. Here, we propose a new framework to simultaneously study the evolution of many behaviors. We measured the behavioral repertoire of individuals from six species of fruit flies using unsupervised techniques and identified all stereotyped movements exhibited by each species. We then fit a Generalized Linear Mixed Model to estimate the intra-and inter-species behavioral covariances, and, by using the known phylogenetic relationships among species, we estimated the (unobserved) behaviors exhibited by ancestral species. We found that much of intra-specific behavioral variation has a similar covariance structure to previously described long-time scale variation in an individual’s behavior, suggesting that much of the measured variation between individuals of a single species in our assay reflects differences in the status of neural networks, rather than genetic or developmental differences between individuals. We then propose a method to identify groups of behaviors that appear to have evolved in a correlated manner, illustrating how sets of behaviors, rather than individual behaviors, likely evolved. Our approach provides a new framework for identifying co-evolving behaviors and may provide new opportunities to study the mechanistic basis of behavioral evolution.Fil: Hernández Lahme, Damián Gabriel. University of Emory; Estados Unidos. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Rivera, Catalina. University of Emory; Estados UnidosFil: Cande, Jessica. Howard Hughes Medical Institute; Estados UnidosFil: Zhou, Baohua. University of Yale; Estados Unidos. University of Emory; Estados UnidosFil: Stern, David L.. Howard Hughes Medical Institute; Estados UnidosFil: Berman, Gordon J.. University of Emory; Estados UnidoseLife Sciences2021-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/167556Hernández Lahme, Damián Gabriel; Rivera, Catalina; Cande, Jessica; Zhou, Baohua; Stern, David L.; et al.; A framework for studying behavioral evolution by reconstructing ancestral repertoires; eLife Sciences; eLife; 10; 9-2021; 1-192050-084XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://elifesciences.org/articles/61806info:eu-repo/semantics/altIdentifier/doi/10.7554/eLife.61806info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:03:42Zoai:ri.conicet.gov.ar:11336/167556instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:03:42.644CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A framework for studying behavioral evolution by reconstructing ancestral repertoires |
title |
A framework for studying behavioral evolution by reconstructing ancestral repertoires |
spellingShingle |
A framework for studying behavioral evolution by reconstructing ancestral repertoires Hernández Lahme, Damián Gabriel behavior evolution variation Drosophila |
title_short |
A framework for studying behavioral evolution by reconstructing ancestral repertoires |
title_full |
A framework for studying behavioral evolution by reconstructing ancestral repertoires |
title_fullStr |
A framework for studying behavioral evolution by reconstructing ancestral repertoires |
title_full_unstemmed |
A framework for studying behavioral evolution by reconstructing ancestral repertoires |
title_sort |
A framework for studying behavioral evolution by reconstructing ancestral repertoires |
dc.creator.none.fl_str_mv |
Hernández Lahme, Damián Gabriel Rivera, Catalina Cande, Jessica Zhou, Baohua Stern, David L. Berman, Gordon J. |
author |
Hernández Lahme, Damián Gabriel |
author_facet |
Hernández Lahme, Damián Gabriel Rivera, Catalina Cande, Jessica Zhou, Baohua Stern, David L. Berman, Gordon J. |
author_role |
author |
author2 |
Rivera, Catalina Cande, Jessica Zhou, Baohua Stern, David L. Berman, Gordon J. |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
behavior evolution variation Drosophila |
topic |
behavior evolution variation Drosophila |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Although different animal species often exhibit extensive variation in many behaviors, typically scientists examine one or a small number of behaviors in any single study. Here, we propose a new framework to simultaneously study the evolution of many behaviors. We measured the behavioral repertoire of individuals from six species of fruit flies using unsupervised techniques and identified all stereotyped movements exhibited by each species. We then fit a Generalized Linear Mixed Model to estimate the intra-and inter-species behavioral covariances, and, by using the known phylogenetic relationships among species, we estimated the (unobserved) behaviors exhibited by ancestral species. We found that much of intra-specific behavioral variation has a similar covariance structure to previously described long-time scale variation in an individual’s behavior, suggesting that much of the measured variation between individuals of a single species in our assay reflects differences in the status of neural networks, rather than genetic or developmental differences between individuals. We then propose a method to identify groups of behaviors that appear to have evolved in a correlated manner, illustrating how sets of behaviors, rather than individual behaviors, likely evolved. Our approach provides a new framework for identifying co-evolving behaviors and may provide new opportunities to study the mechanistic basis of behavioral evolution. Fil: Hernández Lahme, Damián Gabriel. University of Emory; Estados Unidos. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina Fil: Rivera, Catalina. University of Emory; Estados Unidos Fil: Cande, Jessica. Howard Hughes Medical Institute; Estados Unidos Fil: Zhou, Baohua. University of Yale; Estados Unidos. University of Emory; Estados Unidos Fil: Stern, David L.. Howard Hughes Medical Institute; Estados Unidos Fil: Berman, Gordon J.. University of Emory; Estados Unidos |
description |
Although different animal species often exhibit extensive variation in many behaviors, typically scientists examine one or a small number of behaviors in any single study. Here, we propose a new framework to simultaneously study the evolution of many behaviors. We measured the behavioral repertoire of individuals from six species of fruit flies using unsupervised techniques and identified all stereotyped movements exhibited by each species. We then fit a Generalized Linear Mixed Model to estimate the intra-and inter-species behavioral covariances, and, by using the known phylogenetic relationships among species, we estimated the (unobserved) behaviors exhibited by ancestral species. We found that much of intra-specific behavioral variation has a similar covariance structure to previously described long-time scale variation in an individual’s behavior, suggesting that much of the measured variation between individuals of a single species in our assay reflects differences in the status of neural networks, rather than genetic or developmental differences between individuals. We then propose a method to identify groups of behaviors that appear to have evolved in a correlated manner, illustrating how sets of behaviors, rather than individual behaviors, likely evolved. Our approach provides a new framework for identifying co-evolving behaviors and may provide new opportunities to study the mechanistic basis of behavioral evolution. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/167556 Hernández Lahme, Damián Gabriel; Rivera, Catalina; Cande, Jessica; Zhou, Baohua; Stern, David L.; et al.; A framework for studying behavioral evolution by reconstructing ancestral repertoires; eLife Sciences; eLife; 10; 9-2021; 1-19 2050-084X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/167556 |
identifier_str_mv |
Hernández Lahme, Damián Gabriel; Rivera, Catalina; Cande, Jessica; Zhou, Baohua; Stern, David L.; et al.; A framework for studying behavioral evolution by reconstructing ancestral repertoires; eLife Sciences; eLife; 10; 9-2021; 1-19 2050-084X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://elifesciences.org/articles/61806 info:eu-repo/semantics/altIdentifier/doi/10.7554/eLife.61806 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
eLife Sciences |
publisher.none.fl_str_mv |
eLife Sciences |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846781276112027648 |
score |
12.982451 |