Cupric Oxide Nanoleaves for the Oxidative Degradation of Methyl Orange without Heating or Light
- Autores
- Londoño Calderon, Cesar Leandro; Menchaca Nal, Sandra; Francois, Nora J.; Pampillo, Laura Gabriela; Froimowicz, Pablo
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Low-cost 2D cupric oxide nanoleaves (CuO NLs) arestraightforwardly synthesized at room temperature by precipitationvarying the addition method of the alkali. No further treatments arenecessary to obtain high purity NLs. The effect of the different additionmethods of alkali on the morphological, structural, vibrational, andoptical properties is studied by field emission scanning electronmicroscopy (FESEM), X-ray diffraction (XRD), and Fourier transforminfrared (FT-IR) and ultraviolet−visible (UV−vis) spectroscopies. NLsgrown by alkali addition in a dropwise manner are on average 281, 178,and 17 nm long, wide, and thick, respectively, and composed ofcrystallites of 14 nm corresponding to the crystallographic planes (1̅11)/(002) and (111)/(200). NLs obtained by this method agglomerateforming flower-like nanostructures, exhibiting indirect band gap energy of 1.21 eV. NLs grown by alkali addition in a one-stepmanner are on average significantly bigger, being 602, 219, and 26 nm long, wide, and thick, respectively, composed of crystallites of19 and 16 nm corresponding to the crystallographic planes (1̅11)/(002) and (111)/(200), respectively. These NLs agglomeraterandomly with no predominant form observed, exhibiting indirect band gap energy of 1.39 eV. The addition method of alkali doesnot influence the average crystallite size of NLs, whereas the microstrain distribution is sensitive to the initial concentration of OH−ions. Our results suggest that an indirect electronic transition between the valence and conduction bands might be more feasiblethan a direct one. NLs grown by the one-step method present the highest efficiency as catalyst toward catalytic oxidative degradationof the methyl orange dye with no heating and without the influence of light. Finally, this catalyst is easily recycled several timespreserving its high catalytic activity.
Fil: Londoño Calderon, Cesar Leandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnología en Polímeros y Nanotecnología. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnología en Polímeros y Nanotecnología; Argentina
Fil: Menchaca Nal, Sandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnología en Polímeros y Nanotecnología. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnología en Polímeros y Nanotecnología; Argentina
Fil: Francois, Nora J.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnología en Polímeros y Nanotecnología. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnología en Polímeros y Nanotecnología; Argentina
Fil: Pampillo, Laura Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; Argentina
Fil: Froimowicz, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnología en Polímeros y Nanotecnología. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnología en Polímeros y Nanotecnología; Argentina - Materia
-
CHEMICAL DESIGN
NANOPARTICLES
NANOLEAVES
CUPRIC OXIDE
CATALYTIC DEGRADATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/129631
Ver los metadatos del registro completo
id |
CONICETDig_55c6ab650a2ddd61aa386b378c709f51 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/129631 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Cupric Oxide Nanoleaves for the Oxidative Degradation of Methyl Orange without Heating or LightLondoño Calderon, Cesar LeandroMenchaca Nal, SandraFrancois, Nora J.Pampillo, Laura GabrielaFroimowicz, PabloCHEMICAL DESIGNNANOPARTICLESNANOLEAVESCUPRIC OXIDECATALYTIC DEGRADATIONhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2Low-cost 2D cupric oxide nanoleaves (CuO NLs) arestraightforwardly synthesized at room temperature by precipitationvarying the addition method of the alkali. No further treatments arenecessary to obtain high purity NLs. The effect of the different additionmethods of alkali on the morphological, structural, vibrational, andoptical properties is studied by field emission scanning electronmicroscopy (FESEM), X-ray diffraction (XRD), and Fourier transforminfrared (FT-IR) and ultraviolet−visible (UV−vis) spectroscopies. NLsgrown by alkali addition in a dropwise manner are on average 281, 178,and 17 nm long, wide, and thick, respectively, and composed ofcrystallites of 14 nm corresponding to the crystallographic planes (1̅11)/(002) and (111)/(200). NLs obtained by this method agglomerateforming flower-like nanostructures, exhibiting indirect band gap energy of 1.21 eV. NLs grown by alkali addition in a one-stepmanner are on average significantly bigger, being 602, 219, and 26 nm long, wide, and thick, respectively, composed of crystallites of19 and 16 nm corresponding to the crystallographic planes (1̅11)/(002) and (111)/(200), respectively. These NLs agglomeraterandomly with no predominant form observed, exhibiting indirect band gap energy of 1.39 eV. The addition method of alkali doesnot influence the average crystallite size of NLs, whereas the microstrain distribution is sensitive to the initial concentration of OH−ions. Our results suggest that an indirect electronic transition between the valence and conduction bands might be more feasiblethan a direct one. NLs grown by the one-step method present the highest efficiency as catalyst toward catalytic oxidative degradationof the methyl orange dye with no heating and without the influence of light. Finally, this catalyst is easily recycled several timespreserving its high catalytic activity.Fil: Londoño Calderon, Cesar Leandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnología en Polímeros y Nanotecnología. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnología en Polímeros y Nanotecnología; ArgentinaFil: Menchaca Nal, Sandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnología en Polímeros y Nanotecnología. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnología en Polímeros y Nanotecnología; ArgentinaFil: Francois, Nora J.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnología en Polímeros y Nanotecnología. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnología en Polímeros y Nanotecnología; ArgentinaFil: Pampillo, Laura Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; ArgentinaFil: Froimowicz, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnología en Polímeros y Nanotecnología. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnología en Polímeros y Nanotecnología; ArgentinaAmerican Chemical Society2020-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/129631Londoño Calderon, Cesar Leandro; Menchaca Nal, Sandra; Francois, Nora J.; Pampillo, Laura Gabriela; Froimowicz, Pablo; Cupric Oxide Nanoleaves for the Oxidative Degradation of Methyl Orange without Heating or Light; American Chemical Society; ACS Applied Nano Materials; 3; 3; 2-2020; 2987-29962574-0970CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acsanm.0c00283info:eu-repo/semantics/altIdentifier/doi/10.1021/acsanm.0c00283info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:57:58Zoai:ri.conicet.gov.ar:11336/129631instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:57:58.735CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Cupric Oxide Nanoleaves for the Oxidative Degradation of Methyl Orange without Heating or Light |
title |
Cupric Oxide Nanoleaves for the Oxidative Degradation of Methyl Orange without Heating or Light |
spellingShingle |
Cupric Oxide Nanoleaves for the Oxidative Degradation of Methyl Orange without Heating or Light Londoño Calderon, Cesar Leandro CHEMICAL DESIGN NANOPARTICLES NANOLEAVES CUPRIC OXIDE CATALYTIC DEGRADATION |
title_short |
Cupric Oxide Nanoleaves for the Oxidative Degradation of Methyl Orange without Heating or Light |
title_full |
Cupric Oxide Nanoleaves for the Oxidative Degradation of Methyl Orange without Heating or Light |
title_fullStr |
Cupric Oxide Nanoleaves for the Oxidative Degradation of Methyl Orange without Heating or Light |
title_full_unstemmed |
Cupric Oxide Nanoleaves for the Oxidative Degradation of Methyl Orange without Heating or Light |
title_sort |
Cupric Oxide Nanoleaves for the Oxidative Degradation of Methyl Orange without Heating or Light |
dc.creator.none.fl_str_mv |
Londoño Calderon, Cesar Leandro Menchaca Nal, Sandra Francois, Nora J. Pampillo, Laura Gabriela Froimowicz, Pablo |
author |
Londoño Calderon, Cesar Leandro |
author_facet |
Londoño Calderon, Cesar Leandro Menchaca Nal, Sandra Francois, Nora J. Pampillo, Laura Gabriela Froimowicz, Pablo |
author_role |
author |
author2 |
Menchaca Nal, Sandra Francois, Nora J. Pampillo, Laura Gabriela Froimowicz, Pablo |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
CHEMICAL DESIGN NANOPARTICLES NANOLEAVES CUPRIC OXIDE CATALYTIC DEGRADATION |
topic |
CHEMICAL DESIGN NANOPARTICLES NANOLEAVES CUPRIC OXIDE CATALYTIC DEGRADATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Low-cost 2D cupric oxide nanoleaves (CuO NLs) arestraightforwardly synthesized at room temperature by precipitationvarying the addition method of the alkali. No further treatments arenecessary to obtain high purity NLs. The effect of the different additionmethods of alkali on the morphological, structural, vibrational, andoptical properties is studied by field emission scanning electronmicroscopy (FESEM), X-ray diffraction (XRD), and Fourier transforminfrared (FT-IR) and ultraviolet−visible (UV−vis) spectroscopies. NLsgrown by alkali addition in a dropwise manner are on average 281, 178,and 17 nm long, wide, and thick, respectively, and composed ofcrystallites of 14 nm corresponding to the crystallographic planes (1̅11)/(002) and (111)/(200). NLs obtained by this method agglomerateforming flower-like nanostructures, exhibiting indirect band gap energy of 1.21 eV. NLs grown by alkali addition in a one-stepmanner are on average significantly bigger, being 602, 219, and 26 nm long, wide, and thick, respectively, composed of crystallites of19 and 16 nm corresponding to the crystallographic planes (1̅11)/(002) and (111)/(200), respectively. These NLs agglomeraterandomly with no predominant form observed, exhibiting indirect band gap energy of 1.39 eV. The addition method of alkali doesnot influence the average crystallite size of NLs, whereas the microstrain distribution is sensitive to the initial concentration of OH−ions. Our results suggest that an indirect electronic transition between the valence and conduction bands might be more feasiblethan a direct one. NLs grown by the one-step method present the highest efficiency as catalyst toward catalytic oxidative degradationof the methyl orange dye with no heating and without the influence of light. Finally, this catalyst is easily recycled several timespreserving its high catalytic activity. Fil: Londoño Calderon, Cesar Leandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnología en Polímeros y Nanotecnología. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnología en Polímeros y Nanotecnología; Argentina Fil: Menchaca Nal, Sandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnología en Polímeros y Nanotecnología. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnología en Polímeros y Nanotecnología; Argentina Fil: Francois, Nora J.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnología en Polímeros y Nanotecnología. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnología en Polímeros y Nanotecnología; Argentina Fil: Pampillo, Laura Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; Argentina Fil: Froimowicz, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnología en Polímeros y Nanotecnología. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnología en Polímeros y Nanotecnología; Argentina |
description |
Low-cost 2D cupric oxide nanoleaves (CuO NLs) arestraightforwardly synthesized at room temperature by precipitationvarying the addition method of the alkali. No further treatments arenecessary to obtain high purity NLs. The effect of the different additionmethods of alkali on the morphological, structural, vibrational, andoptical properties is studied by field emission scanning electronmicroscopy (FESEM), X-ray diffraction (XRD), and Fourier transforminfrared (FT-IR) and ultraviolet−visible (UV−vis) spectroscopies. NLsgrown by alkali addition in a dropwise manner are on average 281, 178,and 17 nm long, wide, and thick, respectively, and composed ofcrystallites of 14 nm corresponding to the crystallographic planes (1̅11)/(002) and (111)/(200). NLs obtained by this method agglomerateforming flower-like nanostructures, exhibiting indirect band gap energy of 1.21 eV. NLs grown by alkali addition in a one-stepmanner are on average significantly bigger, being 602, 219, and 26 nm long, wide, and thick, respectively, composed of crystallites of19 and 16 nm corresponding to the crystallographic planes (1̅11)/(002) and (111)/(200), respectively. These NLs agglomeraterandomly with no predominant form observed, exhibiting indirect band gap energy of 1.39 eV. The addition method of alkali doesnot influence the average crystallite size of NLs, whereas the microstrain distribution is sensitive to the initial concentration of OH−ions. Our results suggest that an indirect electronic transition between the valence and conduction bands might be more feasiblethan a direct one. NLs grown by the one-step method present the highest efficiency as catalyst toward catalytic oxidative degradationof the methyl orange dye with no heating and without the influence of light. Finally, this catalyst is easily recycled several timespreserving its high catalytic activity. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/129631 Londoño Calderon, Cesar Leandro; Menchaca Nal, Sandra; Francois, Nora J.; Pampillo, Laura Gabriela; Froimowicz, Pablo; Cupric Oxide Nanoleaves for the Oxidative Degradation of Methyl Orange without Heating or Light; American Chemical Society; ACS Applied Nano Materials; 3; 3; 2-2020; 2987-2996 2574-0970 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/129631 |
identifier_str_mv |
Londoño Calderon, Cesar Leandro; Menchaca Nal, Sandra; Francois, Nora J.; Pampillo, Laura Gabriela; Froimowicz, Pablo; Cupric Oxide Nanoleaves for the Oxidative Degradation of Methyl Orange without Heating or Light; American Chemical Society; ACS Applied Nano Materials; 3; 3; 2-2020; 2987-2996 2574-0970 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acsanm.0c00283 info:eu-repo/semantics/altIdentifier/doi/10.1021/acsanm.0c00283 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613731220193280 |
score |
13.070432 |