A computational theory for the learning of equivalence relations

Autores
Lew, Sergio E.; Zanutto, Bonifacio Silvano
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Equivalence relations (ERs) are logical entities that emerge concurrently with the development of language capabilities. In this work we propose a computational model that learns to build ERs by learning simple conditional rules. The model includes visual areas, dopaminergic, and noradrenergic structures as well as prefrontal and motor areas, each of them modeled as a group of continuous valued units that simulate clusters of real neurons. In the model, lateral interaction between neurons of visual structures and top-down modulation of prefrontal/premotor structures over the activity of neurons in visual structures are necessary conditions for learning the paradigm. In terms of the number of neurons and their interaction, we show that a minimal structural complexity is required for learning ERs among conditioned stimuli. Paradoxically, the emergence of the ER drives a reduction in the number of neurons needed to maintain those previously specific stimulus–response learned rules, allowing an efficient use of neuronal resources.
Fil: Lew, Sergio E.. Universidad de Buenos Aires. Facultad de Ingenieria. Instituto de Ingeniería Biomédica; Argentina
Fil: Zanutto, Bonifacio Silvano. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingenieria. Instituto de Ingeniería Biomédica; Argentina
Materia
Language
Neural network
Equivalence relations
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/11233

id CONICETDig_55a9bba19c2b76c04e5ccc4d6a93f79d
oai_identifier_str oai:ri.conicet.gov.ar:11336/11233
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A computational theory for the learning of equivalence relationsLew, Sergio E.Zanutto, Bonifacio SilvanoLanguageNeural networkEquivalence relationshttps://purl.org/becyt/ford/2.6https://purl.org/becyt/ford/2Equivalence relations (ERs) are logical entities that emerge concurrently with the development of language capabilities. In this work we propose a computational model that learns to build ERs by learning simple conditional rules. The model includes visual areas, dopaminergic, and noradrenergic structures as well as prefrontal and motor areas, each of them modeled as a group of continuous valued units that simulate clusters of real neurons. In the model, lateral interaction between neurons of visual structures and top-down modulation of prefrontal/premotor structures over the activity of neurons in visual structures are necessary conditions for learning the paradigm. In terms of the number of neurons and their interaction, we show that a minimal structural complexity is required for learning ERs among conditioned stimuli. Paradoxically, the emergence of the ER drives a reduction in the number of neurons needed to maintain those previously specific stimulus–response learned rules, allowing an efficient use of neuronal resources.Fil: Lew, Sergio E.. Universidad de Buenos Aires. Facultad de Ingenieria. Instituto de Ingeniería Biomédica; ArgentinaFil: Zanutto, Bonifacio Silvano. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingenieria. Instituto de Ingeniería Biomédica; ArgentinaFrontiers2011-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/11233Lew, Sergio E.; Zanutto, Bonifacio Silvano; A computational theory for the learning of equivalence relations; Frontiers; Frontiers In Human Neuroscience; 5; 113; 10-2011; 1-101662-5161enginfo:eu-repo/semantics/altIdentifier/url/http://journal.frontiersin.org/article/10.3389/fnhum.2011.00113/fullinfo:eu-repo/semantics/altIdentifier/doi/10.3389/fnhum.2011.00113info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:35:52Zoai:ri.conicet.gov.ar:11336/11233instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:35:52.388CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A computational theory for the learning of equivalence relations
title A computational theory for the learning of equivalence relations
spellingShingle A computational theory for the learning of equivalence relations
Lew, Sergio E.
Language
Neural network
Equivalence relations
title_short A computational theory for the learning of equivalence relations
title_full A computational theory for the learning of equivalence relations
title_fullStr A computational theory for the learning of equivalence relations
title_full_unstemmed A computational theory for the learning of equivalence relations
title_sort A computational theory for the learning of equivalence relations
dc.creator.none.fl_str_mv Lew, Sergio E.
Zanutto, Bonifacio Silvano
author Lew, Sergio E.
author_facet Lew, Sergio E.
Zanutto, Bonifacio Silvano
author_role author
author2 Zanutto, Bonifacio Silvano
author2_role author
dc.subject.none.fl_str_mv Language
Neural network
Equivalence relations
topic Language
Neural network
Equivalence relations
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.6
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Equivalence relations (ERs) are logical entities that emerge concurrently with the development of language capabilities. In this work we propose a computational model that learns to build ERs by learning simple conditional rules. The model includes visual areas, dopaminergic, and noradrenergic structures as well as prefrontal and motor areas, each of them modeled as a group of continuous valued units that simulate clusters of real neurons. In the model, lateral interaction between neurons of visual structures and top-down modulation of prefrontal/premotor structures over the activity of neurons in visual structures are necessary conditions for learning the paradigm. In terms of the number of neurons and their interaction, we show that a minimal structural complexity is required for learning ERs among conditioned stimuli. Paradoxically, the emergence of the ER drives a reduction in the number of neurons needed to maintain those previously specific stimulus–response learned rules, allowing an efficient use of neuronal resources.
Fil: Lew, Sergio E.. Universidad de Buenos Aires. Facultad de Ingenieria. Instituto de Ingeniería Biomédica; Argentina
Fil: Zanutto, Bonifacio Silvano. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingenieria. Instituto de Ingeniería Biomédica; Argentina
description Equivalence relations (ERs) are logical entities that emerge concurrently with the development of language capabilities. In this work we propose a computational model that learns to build ERs by learning simple conditional rules. The model includes visual areas, dopaminergic, and noradrenergic structures as well as prefrontal and motor areas, each of them modeled as a group of continuous valued units that simulate clusters of real neurons. In the model, lateral interaction between neurons of visual structures and top-down modulation of prefrontal/premotor structures over the activity of neurons in visual structures are necessary conditions for learning the paradigm. In terms of the number of neurons and their interaction, we show that a minimal structural complexity is required for learning ERs among conditioned stimuli. Paradoxically, the emergence of the ER drives a reduction in the number of neurons needed to maintain those previously specific stimulus–response learned rules, allowing an efficient use of neuronal resources.
publishDate 2011
dc.date.none.fl_str_mv 2011-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/11233
Lew, Sergio E.; Zanutto, Bonifacio Silvano; A computational theory for the learning of equivalence relations; Frontiers; Frontiers In Human Neuroscience; 5; 113; 10-2011; 1-10
1662-5161
url http://hdl.handle.net/11336/11233
identifier_str_mv Lew, Sergio E.; Zanutto, Bonifacio Silvano; A computational theory for the learning of equivalence relations; Frontiers; Frontiers In Human Neuroscience; 5; 113; 10-2011; 1-10
1662-5161
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://journal.frontiersin.org/article/10.3389/fnhum.2011.00113/full
info:eu-repo/semantics/altIdentifier/doi/10.3389/fnhum.2011.00113
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Frontiers
publisher.none.fl_str_mv Frontiers
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614378099310592
score 13.070432