Prediction with measurement errors in finite populations
- Autores
- Singer, Julio M.; Stanek III, Edward J.; Lencina, Viviana Beatriz; González, Luz Mery; Li, Wenjun; San Martino, Silvina
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We address the problem of selecting the best linear unbiased predictor (BLUP) of the latent value (e.g., serum glucose fasting level) of sample subjects with heteroskedastic measurement errors. Using a simple example, we compare the usual mixed model BLUP to a similar predictor based on a mixed model framed in a finite population (FPMM) setup with two sources of variability, the first of which corresponds to simple random sampling and the second, to heteroskedastic measurement errors. Under this last approach, we show that when measurement errors are subject-specific, the BLUP shrinkage constants are based on a pooled measurement error variance as opposed to the individual ones generally considered for the usual mixed model BLUP. In contrast, when the heteroskedastic measurement errors are measurement condition-specific, the FPMM BLUP involves different shrinkage constants. We also show that in this setup, when measurement errors are subject-specific, the usual mixed model predictor is biased but has a smaller mean squared error than the FPMM BLUP which points to some difficulties in the interpretation of such predictors.
Fil: Singer, Julio M.. Universidade de Sao Paulo; Brasil
Fil: Stanek III, Edward J.. University of Massachussets; Estados Unidos
Fil: Lencina, Viviana Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Económicas. Instituto de Investigaciones Estadísticas; Argentina
Fil: González, Luz Mery. Universidad Nacional de Colombia; Colombia
Fil: Li, Wenjun. University of Massachussets; Estados Unidos
Fil: San Martino, Silvina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina - Materia
-
FINITE POPULATION
HETEROSKEDASTICITY
SUPERPOPULATION
UNBIASEDNESS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/70075
Ver los metadatos del registro completo
id |
CONICETDig_54614539c68fe7c2134d5521f2e5010b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/70075 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Prediction with measurement errors in finite populationsSinger, Julio M.Stanek III, Edward J.Lencina, Viviana BeatrizGonzález, Luz MeryLi, WenjunSan Martino, SilvinaFINITE POPULATIONHETEROSKEDASTICITYSUPERPOPULATIONUNBIASEDNESShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We address the problem of selecting the best linear unbiased predictor (BLUP) of the latent value (e.g., serum glucose fasting level) of sample subjects with heteroskedastic measurement errors. Using a simple example, we compare the usual mixed model BLUP to a similar predictor based on a mixed model framed in a finite population (FPMM) setup with two sources of variability, the first of which corresponds to simple random sampling and the second, to heteroskedastic measurement errors. Under this last approach, we show that when measurement errors are subject-specific, the BLUP shrinkage constants are based on a pooled measurement error variance as opposed to the individual ones generally considered for the usual mixed model BLUP. In contrast, when the heteroskedastic measurement errors are measurement condition-specific, the FPMM BLUP involves different shrinkage constants. We also show that in this setup, when measurement errors are subject-specific, the usual mixed model predictor is biased but has a smaller mean squared error than the FPMM BLUP which points to some difficulties in the interpretation of such predictors.Fil: Singer, Julio M.. Universidade de Sao Paulo; BrasilFil: Stanek III, Edward J.. University of Massachussets; Estados UnidosFil: Lencina, Viviana Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Económicas. Instituto de Investigaciones Estadísticas; ArgentinaFil: González, Luz Mery. Universidad Nacional de Colombia; ColombiaFil: Li, Wenjun. University of Massachussets; Estados UnidosFil: San Martino, Silvina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; ArgentinaElsevier Science2012-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/70075Singer, Julio M.; Stanek III, Edward J.; Lencina, Viviana Beatriz; González, Luz Mery; Li, Wenjun; et al.; Prediction with measurement errors in finite populations; Elsevier Science; Statistics & Probability Letters; 82; 2; 2-2012; 332-3390167-7152CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.spl.2011.10.013info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0167715211003348info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3230038/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:06:15Zoai:ri.conicet.gov.ar:11336/70075instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:06:15.795CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Prediction with measurement errors in finite populations |
title |
Prediction with measurement errors in finite populations |
spellingShingle |
Prediction with measurement errors in finite populations Singer, Julio M. FINITE POPULATION HETEROSKEDASTICITY SUPERPOPULATION UNBIASEDNESS |
title_short |
Prediction with measurement errors in finite populations |
title_full |
Prediction with measurement errors in finite populations |
title_fullStr |
Prediction with measurement errors in finite populations |
title_full_unstemmed |
Prediction with measurement errors in finite populations |
title_sort |
Prediction with measurement errors in finite populations |
dc.creator.none.fl_str_mv |
Singer, Julio M. Stanek III, Edward J. Lencina, Viviana Beatriz González, Luz Mery Li, Wenjun San Martino, Silvina |
author |
Singer, Julio M. |
author_facet |
Singer, Julio M. Stanek III, Edward J. Lencina, Viviana Beatriz González, Luz Mery Li, Wenjun San Martino, Silvina |
author_role |
author |
author2 |
Stanek III, Edward J. Lencina, Viviana Beatriz González, Luz Mery Li, Wenjun San Martino, Silvina |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
FINITE POPULATION HETEROSKEDASTICITY SUPERPOPULATION UNBIASEDNESS |
topic |
FINITE POPULATION HETEROSKEDASTICITY SUPERPOPULATION UNBIASEDNESS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We address the problem of selecting the best linear unbiased predictor (BLUP) of the latent value (e.g., serum glucose fasting level) of sample subjects with heteroskedastic measurement errors. Using a simple example, we compare the usual mixed model BLUP to a similar predictor based on a mixed model framed in a finite population (FPMM) setup with two sources of variability, the first of which corresponds to simple random sampling and the second, to heteroskedastic measurement errors. Under this last approach, we show that when measurement errors are subject-specific, the BLUP shrinkage constants are based on a pooled measurement error variance as opposed to the individual ones generally considered for the usual mixed model BLUP. In contrast, when the heteroskedastic measurement errors are measurement condition-specific, the FPMM BLUP involves different shrinkage constants. We also show that in this setup, when measurement errors are subject-specific, the usual mixed model predictor is biased but has a smaller mean squared error than the FPMM BLUP which points to some difficulties in the interpretation of such predictors. Fil: Singer, Julio M.. Universidade de Sao Paulo; Brasil Fil: Stanek III, Edward J.. University of Massachussets; Estados Unidos Fil: Lencina, Viviana Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Económicas. Instituto de Investigaciones Estadísticas; Argentina Fil: González, Luz Mery. Universidad Nacional de Colombia; Colombia Fil: Li, Wenjun. University of Massachussets; Estados Unidos Fil: San Martino, Silvina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina |
description |
We address the problem of selecting the best linear unbiased predictor (BLUP) of the latent value (e.g., serum glucose fasting level) of sample subjects with heteroskedastic measurement errors. Using a simple example, we compare the usual mixed model BLUP to a similar predictor based on a mixed model framed in a finite population (FPMM) setup with two sources of variability, the first of which corresponds to simple random sampling and the second, to heteroskedastic measurement errors. Under this last approach, we show that when measurement errors are subject-specific, the BLUP shrinkage constants are based on a pooled measurement error variance as opposed to the individual ones generally considered for the usual mixed model BLUP. In contrast, when the heteroskedastic measurement errors are measurement condition-specific, the FPMM BLUP involves different shrinkage constants. We also show that in this setup, when measurement errors are subject-specific, the usual mixed model predictor is biased but has a smaller mean squared error than the FPMM BLUP which points to some difficulties in the interpretation of such predictors. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/70075 Singer, Julio M.; Stanek III, Edward J.; Lencina, Viviana Beatriz; González, Luz Mery; Li, Wenjun; et al.; Prediction with measurement errors in finite populations; Elsevier Science; Statistics & Probability Letters; 82; 2; 2-2012; 332-339 0167-7152 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/70075 |
identifier_str_mv |
Singer, Julio M.; Stanek III, Edward J.; Lencina, Viviana Beatriz; González, Luz Mery; Li, Wenjun; et al.; Prediction with measurement errors in finite populations; Elsevier Science; Statistics & Probability Letters; 82; 2; 2-2012; 332-339 0167-7152 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.spl.2011.10.013 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0167715211003348 info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3230038/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613908618280960 |
score |
13.070432 |