Electrocardiographic biomarkers to predict atrial fibrillation in sinus rhythm electrocardiograms
- Autores
- Sanz García, Ancor; Cecconi, Alberto; Vera, Alberto; Camarasaltas, Juan Miguel; Alfonso, Fernando; Ortega, Guillermo José; Jimenez Borreguero, Jesus
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Objective: Early prediction of atrial fibrillation (AF) development would improve patient outcomes. We propose a simple and cheap ECG based score to predict AF development.Methods: A cohort of 16 316 patients was analysed. ECG measures provided by the computer-assisted ECG software were used to identify patients. A first group included patients in sinus rhythm who showed an ECG with AF at any time later (n=505). A second group included patients with all their ECGs in sinus rhythm (n=15 811). By using a training set (75% of the cohort) the initial sinus rhythm ECGs of both groups were analysed and a predictive risk score based on a multivariate logistic model was constructed.Results: A multivariate regression model was constructed with 32 variables showing a predictive value characterised by an area under the curve (AUC) of 0.776 (95% CI: 0.738 to 0.814). The subsequent risk score included the following variables: age, duration of P-wave in aVF, V4 and V5; duration of T-wave in V3, mean QT interval adjusted for heart rate, transverse P-wave clockwise rotation, transverse P-wave terminal angle and transverse QRS complex terminal vector magnitude. Risk score values ranged from 0 (no risk) to 5 (high risk). The predictive validity of the score reached an AUC of 0.764 (95% CI: 0.722 to 0.806) with a global specificity of 61% and a sensitivity of 55%.Conclusions: The automatic assessment of ECG biomarkers from ECGs in sinus rhythm is able to predict the risk for AF providing a low-cost screening strategy for early detection of this pathology.
Fil: Sanz García, Ancor. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; España
Fil: Cecconi, Alberto. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; España
Fil: Vera, Alberto. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa. Servicio de Neurocirugia. Grupo de Epilepsia; España
Fil: Camarasaltas, Juan Miguel. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; España
Fil: Alfonso, Fernando. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; España
Fil: Ortega, Guillermo José. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; España
Fil: Jimenez Borreguero, Jesus. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; España - Materia
-
ATRIAL FIBRILLATION
BIOMARKERS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/166910
Ver los metadatos del registro completo
id |
CONICETDig_54357d9dfdc96053b677e692006d3abe |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/166910 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Electrocardiographic biomarkers to predict atrial fibrillation in sinus rhythm electrocardiogramsSanz García, AncorCecconi, AlbertoVera, AlbertoCamarasaltas, Juan MiguelAlfonso, FernandoOrtega, Guillermo JoséJimenez Borreguero, JesusATRIAL FIBRILLATIONBIOMARKERShttps://purl.org/becyt/ford/3.2https://purl.org/becyt/ford/3Objective: Early prediction of atrial fibrillation (AF) development would improve patient outcomes. We propose a simple and cheap ECG based score to predict AF development.Methods: A cohort of 16 316 patients was analysed. ECG measures provided by the computer-assisted ECG software were used to identify patients. A first group included patients in sinus rhythm who showed an ECG with AF at any time later (n=505). A second group included patients with all their ECGs in sinus rhythm (n=15 811). By using a training set (75% of the cohort) the initial sinus rhythm ECGs of both groups were analysed and a predictive risk score based on a multivariate logistic model was constructed.Results: A multivariate regression model was constructed with 32 variables showing a predictive value characterised by an area under the curve (AUC) of 0.776 (95% CI: 0.738 to 0.814). The subsequent risk score included the following variables: age, duration of P-wave in aVF, V4 and V5; duration of T-wave in V3, mean QT interval adjusted for heart rate, transverse P-wave clockwise rotation, transverse P-wave terminal angle and transverse QRS complex terminal vector magnitude. Risk score values ranged from 0 (no risk) to 5 (high risk). The predictive validity of the score reached an AUC of 0.764 (95% CI: 0.722 to 0.806) with a global specificity of 61% and a sensitivity of 55%.Conclusions: The automatic assessment of ECG biomarkers from ECGs in sinus rhythm is able to predict the risk for AF providing a low-cost screening strategy for early detection of this pathology.Fil: Sanz García, Ancor. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; EspañaFil: Cecconi, Alberto. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; EspañaFil: Vera, Alberto. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa. Servicio de Neurocirugia. Grupo de Epilepsia; EspañaFil: Camarasaltas, Juan Miguel. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; EspañaFil: Alfonso, Fernando. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; EspañaFil: Ortega, Guillermo José. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; EspañaFil: Jimenez Borreguero, Jesus. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; EspañaB M J Publishing Group2021-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/166910Sanz García, Ancor; Cecconi, Alberto; Vera, Alberto; Camarasaltas, Juan Miguel; Alfonso, Fernando; et al.; Electrocardiographic biomarkers to predict atrial fibrillation in sinus rhythm electrocardiograms; B M J Publishing Group; Heart (british Cardiac Society); 107; 22; 6-2021; 1813-18191355-6037CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1136/heartjnl-2021-319120info:eu-repo/semantics/altIdentifier/url/https://heart.bmj.com/content/107/22/1813info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:24:21Zoai:ri.conicet.gov.ar:11336/166910instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:24:21.934CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Electrocardiographic biomarkers to predict atrial fibrillation in sinus rhythm electrocardiograms |
title |
Electrocardiographic biomarkers to predict atrial fibrillation in sinus rhythm electrocardiograms |
spellingShingle |
Electrocardiographic biomarkers to predict atrial fibrillation in sinus rhythm electrocardiograms Sanz García, Ancor ATRIAL FIBRILLATION BIOMARKERS |
title_short |
Electrocardiographic biomarkers to predict atrial fibrillation in sinus rhythm electrocardiograms |
title_full |
Electrocardiographic biomarkers to predict atrial fibrillation in sinus rhythm electrocardiograms |
title_fullStr |
Electrocardiographic biomarkers to predict atrial fibrillation in sinus rhythm electrocardiograms |
title_full_unstemmed |
Electrocardiographic biomarkers to predict atrial fibrillation in sinus rhythm electrocardiograms |
title_sort |
Electrocardiographic biomarkers to predict atrial fibrillation in sinus rhythm electrocardiograms |
dc.creator.none.fl_str_mv |
Sanz García, Ancor Cecconi, Alberto Vera, Alberto Camarasaltas, Juan Miguel Alfonso, Fernando Ortega, Guillermo José Jimenez Borreguero, Jesus |
author |
Sanz García, Ancor |
author_facet |
Sanz García, Ancor Cecconi, Alberto Vera, Alberto Camarasaltas, Juan Miguel Alfonso, Fernando Ortega, Guillermo José Jimenez Borreguero, Jesus |
author_role |
author |
author2 |
Cecconi, Alberto Vera, Alberto Camarasaltas, Juan Miguel Alfonso, Fernando Ortega, Guillermo José Jimenez Borreguero, Jesus |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
ATRIAL FIBRILLATION BIOMARKERS |
topic |
ATRIAL FIBRILLATION BIOMARKERS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.2 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
Objective: Early prediction of atrial fibrillation (AF) development would improve patient outcomes. We propose a simple and cheap ECG based score to predict AF development.Methods: A cohort of 16 316 patients was analysed. ECG measures provided by the computer-assisted ECG software were used to identify patients. A first group included patients in sinus rhythm who showed an ECG with AF at any time later (n=505). A second group included patients with all their ECGs in sinus rhythm (n=15 811). By using a training set (75% of the cohort) the initial sinus rhythm ECGs of both groups were analysed and a predictive risk score based on a multivariate logistic model was constructed.Results: A multivariate regression model was constructed with 32 variables showing a predictive value characterised by an area under the curve (AUC) of 0.776 (95% CI: 0.738 to 0.814). The subsequent risk score included the following variables: age, duration of P-wave in aVF, V4 and V5; duration of T-wave in V3, mean QT interval adjusted for heart rate, transverse P-wave clockwise rotation, transverse P-wave terminal angle and transverse QRS complex terminal vector magnitude. Risk score values ranged from 0 (no risk) to 5 (high risk). The predictive validity of the score reached an AUC of 0.764 (95% CI: 0.722 to 0.806) with a global specificity of 61% and a sensitivity of 55%.Conclusions: The automatic assessment of ECG biomarkers from ECGs in sinus rhythm is able to predict the risk for AF providing a low-cost screening strategy for early detection of this pathology. Fil: Sanz García, Ancor. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; España Fil: Cecconi, Alberto. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; España Fil: Vera, Alberto. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa. Servicio de Neurocirugia. Grupo de Epilepsia; España Fil: Camarasaltas, Juan Miguel. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; España Fil: Alfonso, Fernando. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; España Fil: Ortega, Guillermo José. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; España Fil: Jimenez Borreguero, Jesus. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; España |
description |
Objective: Early prediction of atrial fibrillation (AF) development would improve patient outcomes. We propose a simple and cheap ECG based score to predict AF development.Methods: A cohort of 16 316 patients was analysed. ECG measures provided by the computer-assisted ECG software were used to identify patients. A first group included patients in sinus rhythm who showed an ECG with AF at any time later (n=505). A second group included patients with all their ECGs in sinus rhythm (n=15 811). By using a training set (75% of the cohort) the initial sinus rhythm ECGs of both groups were analysed and a predictive risk score based on a multivariate logistic model was constructed.Results: A multivariate regression model was constructed with 32 variables showing a predictive value characterised by an area under the curve (AUC) of 0.776 (95% CI: 0.738 to 0.814). The subsequent risk score included the following variables: age, duration of P-wave in aVF, V4 and V5; duration of T-wave in V3, mean QT interval adjusted for heart rate, transverse P-wave clockwise rotation, transverse P-wave terminal angle and transverse QRS complex terminal vector magnitude. Risk score values ranged from 0 (no risk) to 5 (high risk). The predictive validity of the score reached an AUC of 0.764 (95% CI: 0.722 to 0.806) with a global specificity of 61% and a sensitivity of 55%.Conclusions: The automatic assessment of ECG biomarkers from ECGs in sinus rhythm is able to predict the risk for AF providing a low-cost screening strategy for early detection of this pathology. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/166910 Sanz García, Ancor; Cecconi, Alberto; Vera, Alberto; Camarasaltas, Juan Miguel; Alfonso, Fernando; et al.; Electrocardiographic biomarkers to predict atrial fibrillation in sinus rhythm electrocardiograms; B M J Publishing Group; Heart (british Cardiac Society); 107; 22; 6-2021; 1813-1819 1355-6037 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/166910 |
identifier_str_mv |
Sanz García, Ancor; Cecconi, Alberto; Vera, Alberto; Camarasaltas, Juan Miguel; Alfonso, Fernando; et al.; Electrocardiographic biomarkers to predict atrial fibrillation in sinus rhythm electrocardiograms; B M J Publishing Group; Heart (british Cardiac Society); 107; 22; 6-2021; 1813-1819 1355-6037 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1136/heartjnl-2021-319120 info:eu-repo/semantics/altIdentifier/url/https://heart.bmj.com/content/107/22/1813 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
B M J Publishing Group |
publisher.none.fl_str_mv |
B M J Publishing Group |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614240221003776 |
score |
13.070432 |