MethylMix 2.0: An R package for identifying DNA methylation genes
- Autores
- Cedoz, Pierre Louis; Prunello, Marcos Miguel; Brennan, Kevin; Gevaert, Olivier
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Summary: DNA methylation is an important mechanism regulating gene transcription, and its role in carcinogenesis has been extensively studied. Hyper and hypomethylation of genes is a major mechanism of gene expression deregulation in a wide range of diseases. At the same time, highthroughput DNA methylation assays have been developed generating vast amounts of genome wide DNA methylation measurements. We developed MethylMix, an algorithm implemented in R to identify disease specific hyper and hypomethylated genes. Here we present a new version of MethylMix that automates the construction of DNA-methylation and gene expression datasets from The Cancer Genome Atlas (TCGA). More precisely, MethylMix 2.0 incorporates two major updates: The automated downloading of DNA methylation and gene expression datasets from TCGA and the automated preprocessing of such datasets: Value imputation, batch correction and CpG sites clustering within each gene. The resulting datasets can subsequently be analyzed with MethylMix to identify transcriptionally predictive methylation states.
Fil: Cedoz, Pierre Louis. University of Stanford; Estados Unidos
Fil: Prunello, Marcos Miguel. Universidad Nacional de Rosario; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina
Fil: Brennan, Kevin. University of Stanford; Estados Unidos
Fil: Gevaert, Olivier. University of Stanford; Estados Unidos - Materia
-
R PACKAGE
BIOCONDUCTOR
DNA METHYLATION
CANCER SUBTYPING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/95135
Ver los metadatos del registro completo
id |
CONICETDig_53e0d40a4b42987ab1c215710a8fd143 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/95135 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
MethylMix 2.0: An R package for identifying DNA methylation genesCedoz, Pierre LouisPrunello, Marcos MiguelBrennan, KevinGevaert, OlivierR PACKAGEBIOCONDUCTORDNA METHYLATIONCANCER SUBTYPINGhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Summary: DNA methylation is an important mechanism regulating gene transcription, and its role in carcinogenesis has been extensively studied. Hyper and hypomethylation of genes is a major mechanism of gene expression deregulation in a wide range of diseases. At the same time, highthroughput DNA methylation assays have been developed generating vast amounts of genome wide DNA methylation measurements. We developed MethylMix, an algorithm implemented in R to identify disease specific hyper and hypomethylated genes. Here we present a new version of MethylMix that automates the construction of DNA-methylation and gene expression datasets from The Cancer Genome Atlas (TCGA). More precisely, MethylMix 2.0 incorporates two major updates: The automated downloading of DNA methylation and gene expression datasets from TCGA and the automated preprocessing of such datasets: Value imputation, batch correction and CpG sites clustering within each gene. The resulting datasets can subsequently be analyzed with MethylMix to identify transcriptionally predictive methylation states.Fil: Cedoz, Pierre Louis. University of Stanford; Estados UnidosFil: Prunello, Marcos Miguel. Universidad Nacional de Rosario; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; ArgentinaFil: Brennan, Kevin. University of Stanford; Estados UnidosFil: Gevaert, Olivier. University of Stanford; Estados UnidosOxford University Press2018-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/95135Cedoz, Pierre Louis; Prunello, Marcos Miguel; Brennan, Kevin; Gevaert, Olivier; MethylMix 2.0: An R package for identifying DNA methylation genes; Oxford University Press; Bioinformatics (Oxford, England); 34; 17; 9-2018; 3044-30461367-4803CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/bioinformatics/article/34/17/3044/4970512info:eu-repo/semantics/altIdentifier/doi/10.1093/bioinformatics/bty156info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:27:50Zoai:ri.conicet.gov.ar:11336/95135instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:27:50.483CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
MethylMix 2.0: An R package for identifying DNA methylation genes |
title |
MethylMix 2.0: An R package for identifying DNA methylation genes |
spellingShingle |
MethylMix 2.0: An R package for identifying DNA methylation genes Cedoz, Pierre Louis R PACKAGE BIOCONDUCTOR DNA METHYLATION CANCER SUBTYPING |
title_short |
MethylMix 2.0: An R package for identifying DNA methylation genes |
title_full |
MethylMix 2.0: An R package for identifying DNA methylation genes |
title_fullStr |
MethylMix 2.0: An R package for identifying DNA methylation genes |
title_full_unstemmed |
MethylMix 2.0: An R package for identifying DNA methylation genes |
title_sort |
MethylMix 2.0: An R package for identifying DNA methylation genes |
dc.creator.none.fl_str_mv |
Cedoz, Pierre Louis Prunello, Marcos Miguel Brennan, Kevin Gevaert, Olivier |
author |
Cedoz, Pierre Louis |
author_facet |
Cedoz, Pierre Louis Prunello, Marcos Miguel Brennan, Kevin Gevaert, Olivier |
author_role |
author |
author2 |
Prunello, Marcos Miguel Brennan, Kevin Gevaert, Olivier |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
R PACKAGE BIOCONDUCTOR DNA METHYLATION CANCER SUBTYPING |
topic |
R PACKAGE BIOCONDUCTOR DNA METHYLATION CANCER SUBTYPING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Summary: DNA methylation is an important mechanism regulating gene transcription, and its role in carcinogenesis has been extensively studied. Hyper and hypomethylation of genes is a major mechanism of gene expression deregulation in a wide range of diseases. At the same time, highthroughput DNA methylation assays have been developed generating vast amounts of genome wide DNA methylation measurements. We developed MethylMix, an algorithm implemented in R to identify disease specific hyper and hypomethylated genes. Here we present a new version of MethylMix that automates the construction of DNA-methylation and gene expression datasets from The Cancer Genome Atlas (TCGA). More precisely, MethylMix 2.0 incorporates two major updates: The automated downloading of DNA methylation and gene expression datasets from TCGA and the automated preprocessing of such datasets: Value imputation, batch correction and CpG sites clustering within each gene. The resulting datasets can subsequently be analyzed with MethylMix to identify transcriptionally predictive methylation states. Fil: Cedoz, Pierre Louis. University of Stanford; Estados Unidos Fil: Prunello, Marcos Miguel. Universidad Nacional de Rosario; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina Fil: Brennan, Kevin. University of Stanford; Estados Unidos Fil: Gevaert, Olivier. University of Stanford; Estados Unidos |
description |
Summary: DNA methylation is an important mechanism regulating gene transcription, and its role in carcinogenesis has been extensively studied. Hyper and hypomethylation of genes is a major mechanism of gene expression deregulation in a wide range of diseases. At the same time, highthroughput DNA methylation assays have been developed generating vast amounts of genome wide DNA methylation measurements. We developed MethylMix, an algorithm implemented in R to identify disease specific hyper and hypomethylated genes. Here we present a new version of MethylMix that automates the construction of DNA-methylation and gene expression datasets from The Cancer Genome Atlas (TCGA). More precisely, MethylMix 2.0 incorporates two major updates: The automated downloading of DNA methylation and gene expression datasets from TCGA and the automated preprocessing of such datasets: Value imputation, batch correction and CpG sites clustering within each gene. The resulting datasets can subsequently be analyzed with MethylMix to identify transcriptionally predictive methylation states. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/95135 Cedoz, Pierre Louis; Prunello, Marcos Miguel; Brennan, Kevin; Gevaert, Olivier; MethylMix 2.0: An R package for identifying DNA methylation genes; Oxford University Press; Bioinformatics (Oxford, England); 34; 17; 9-2018; 3044-3046 1367-4803 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/95135 |
identifier_str_mv |
Cedoz, Pierre Louis; Prunello, Marcos Miguel; Brennan, Kevin; Gevaert, Olivier; MethylMix 2.0: An R package for identifying DNA methylation genes; Oxford University Press; Bioinformatics (Oxford, England); 34; 17; 9-2018; 3044-3046 1367-4803 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/bioinformatics/article/34/17/3044/4970512 info:eu-repo/semantics/altIdentifier/doi/10.1093/bioinformatics/bty156 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Oxford University Press |
publisher.none.fl_str_mv |
Oxford University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082737668096000 |
score |
13.22299 |