HextractoR: an R package for automatic extraction of hairpins from genome-wide data
- Autores
- Yones, Cristian Ariel; Macchiaroli, Natalia; Kamenetzky, Laura; Stegmayer, Georgina; Milone, Diego Humberto
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Extracting stem-loop sequences (hairpins) from genome-wide data is very important nowadays for some data mining tasks in bioinformatics. The genome preprocessing is very important because it has a strong influence on the later steps and the final results. For example, for novel miRNA prediction, all well-known hairpins must be properly located. Although there are some scripts that can be adapted and put together to achieve this task, they are outdated, none of them guarantees finding correspondence to well-known structures in the genome under analysis, and they do not take advantage of the latest advances in secondary structure prediction. We present here an R package for automatic extraction of hairpins from genome-wide data (HextractorR). HextractoR makes an exhaustive and smart analysis of the genome in order to obtain a very good set of short sequences for further processing. Moreover, genomes can be processed in parallel and with low memory requirements. Results obtained showed that HextractoR has effectively outperformed other methods.
Fil: Yones, Cristian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Macchiaroli, Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; Argentina
Fil: Kamenetzky, Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; Argentina
Fil: Stegmayer, Georgina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina - Materia
-
R PACKAGE
MIRNA HAIRPINGS
GENOME WIDE
EXTRACTION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/151723
Ver los metadatos del registro completo
id |
CONICETDig_5027ef77041f8993693aa4944d811d80 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/151723 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
HextractoR: an R package for automatic extraction of hairpins from genome-wide dataYones, Cristian ArielMacchiaroli, NataliaKamenetzky, LauraStegmayer, GeorginaMilone, Diego HumbertoR PACKAGEMIRNA HAIRPINGSGENOME WIDEEXTRACTIONhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Extracting stem-loop sequences (hairpins) from genome-wide data is very important nowadays for some data mining tasks in bioinformatics. The genome preprocessing is very important because it has a strong influence on the later steps and the final results. For example, for novel miRNA prediction, all well-known hairpins must be properly located. Although there are some scripts that can be adapted and put together to achieve this task, they are outdated, none of them guarantees finding correspondence to well-known structures in the genome under analysis, and they do not take advantage of the latest advances in secondary structure prediction. We present here an R package for automatic extraction of hairpins from genome-wide data (HextractorR). HextractoR makes an exhaustive and smart analysis of the genome in order to obtain a very good set of short sequences for further processing. Moreover, genomes can be processed in parallel and with low memory requirements. Results obtained showed that HextractoR has effectively outperformed other methods.Fil: Yones, Cristian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Macchiaroli, Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Kamenetzky, Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Stegmayer, Georgina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaCold Spring Harbor Laboratory Press2020-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/151723Yones, Cristian Ariel; Macchiaroli, Natalia; Kamenetzky, Laura; Stegmayer, Georgina; Milone, Diego Humberto; HextractoR: an R package for automatic extraction of hairpins from genome-wide data; Cold Spring Harbor Laboratory Press; bioRxiv; 10-2020; 1-62692-8205CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.biorxiv.org/content/10.1101/2020.10.09.333898v1.fullinfo:eu-repo/semantics/altIdentifier/doi/10.1101/2020.10.09.333898info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:00:31Zoai:ri.conicet.gov.ar:11336/151723instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:00:31.955CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
HextractoR: an R package for automatic extraction of hairpins from genome-wide data |
title |
HextractoR: an R package for automatic extraction of hairpins from genome-wide data |
spellingShingle |
HextractoR: an R package for automatic extraction of hairpins from genome-wide data Yones, Cristian Ariel R PACKAGE MIRNA HAIRPINGS GENOME WIDE EXTRACTION |
title_short |
HextractoR: an R package for automatic extraction of hairpins from genome-wide data |
title_full |
HextractoR: an R package for automatic extraction of hairpins from genome-wide data |
title_fullStr |
HextractoR: an R package for automatic extraction of hairpins from genome-wide data |
title_full_unstemmed |
HextractoR: an R package for automatic extraction of hairpins from genome-wide data |
title_sort |
HextractoR: an R package for automatic extraction of hairpins from genome-wide data |
dc.creator.none.fl_str_mv |
Yones, Cristian Ariel Macchiaroli, Natalia Kamenetzky, Laura Stegmayer, Georgina Milone, Diego Humberto |
author |
Yones, Cristian Ariel |
author_facet |
Yones, Cristian Ariel Macchiaroli, Natalia Kamenetzky, Laura Stegmayer, Georgina Milone, Diego Humberto |
author_role |
author |
author2 |
Macchiaroli, Natalia Kamenetzky, Laura Stegmayer, Georgina Milone, Diego Humberto |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
R PACKAGE MIRNA HAIRPINGS GENOME WIDE EXTRACTION |
topic |
R PACKAGE MIRNA HAIRPINGS GENOME WIDE EXTRACTION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Extracting stem-loop sequences (hairpins) from genome-wide data is very important nowadays for some data mining tasks in bioinformatics. The genome preprocessing is very important because it has a strong influence on the later steps and the final results. For example, for novel miRNA prediction, all well-known hairpins must be properly located. Although there are some scripts that can be adapted and put together to achieve this task, they are outdated, none of them guarantees finding correspondence to well-known structures in the genome under analysis, and they do not take advantage of the latest advances in secondary structure prediction. We present here an R package for automatic extraction of hairpins from genome-wide data (HextractorR). HextractoR makes an exhaustive and smart analysis of the genome in order to obtain a very good set of short sequences for further processing. Moreover, genomes can be processed in parallel and with low memory requirements. Results obtained showed that HextractoR has effectively outperformed other methods. Fil: Yones, Cristian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina Fil: Macchiaroli, Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; Argentina Fil: Kamenetzky, Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; Argentina Fil: Stegmayer, Georgina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina |
description |
Extracting stem-loop sequences (hairpins) from genome-wide data is very important nowadays for some data mining tasks in bioinformatics. The genome preprocessing is very important because it has a strong influence on the later steps and the final results. For example, for novel miRNA prediction, all well-known hairpins must be properly located. Although there are some scripts that can be adapted and put together to achieve this task, they are outdated, none of them guarantees finding correspondence to well-known structures in the genome under analysis, and they do not take advantage of the latest advances in secondary structure prediction. We present here an R package for automatic extraction of hairpins from genome-wide data (HextractorR). HextractoR makes an exhaustive and smart analysis of the genome in order to obtain a very good set of short sequences for further processing. Moreover, genomes can be processed in parallel and with low memory requirements. Results obtained showed that HextractoR has effectively outperformed other methods. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/151723 Yones, Cristian Ariel; Macchiaroli, Natalia; Kamenetzky, Laura; Stegmayer, Georgina; Milone, Diego Humberto; HextractoR: an R package for automatic extraction of hairpins from genome-wide data; Cold Spring Harbor Laboratory Press; bioRxiv; 10-2020; 1-6 2692-8205 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/151723 |
identifier_str_mv |
Yones, Cristian Ariel; Macchiaroli, Natalia; Kamenetzky, Laura; Stegmayer, Georgina; Milone, Diego Humberto; HextractoR: an R package for automatic extraction of hairpins from genome-wide data; Cold Spring Harbor Laboratory Press; bioRxiv; 10-2020; 1-6 2692-8205 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.biorxiv.org/content/10.1101/2020.10.09.333898v1.full info:eu-repo/semantics/altIdentifier/doi/10.1101/2020.10.09.333898 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Cold Spring Harbor Laboratory Press |
publisher.none.fl_str_mv |
Cold Spring Harbor Laboratory Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269643376427008 |
score |
13.13397 |