Antibiotic-loaded silica nanoparticle–collagen composite hydrogels with prolonged antimicrobial activity for wound infection prevention

Autores
Alvarez, Gisela Solange; Hélary, Christophe; Mebert, Andrea Mathilde; Wang, Xiaolin; Coradin, Thibaud; Desimone, Martín Federico
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Silica–collagen type I nanocomposite hydrogels are evaluated as medicated dressings to prevent infection in chronic wounds. Two antibiotics, gentamicin and rifamycin, are encapsulated in a single step within plain silica nanoparticles. Their antimicrobial efficiency against Pseudomonas aeruginosa and Staphylococcus aureus is assessed. Gentamycin-loaded 500 nm particles can be immobilized at high silica dose in concentrated collagen hydrogels without modifying their fibrillar structure or impacting on their rheological behavior and increases their proteolytic stability. Gentamicin release from the nanocomposites is sustained over 7 days, offering an unparalleled prolonged antibacterial activity. Particle immobilization also decreases their cytotoxicity towards surface-seeded fibroblast cells. Rifamycin-loaded 100 nm particles significantly alter the collagen hydrogel structure at high silica doses. The thus-obtained nanocomposites show no antibacterial efficiency, due to strong adsorption of rifamycin on collagen fibers. The complex interplay of interactions between drugs, silica and collagen is a key factor regulating the properties of these composite hydrogels as antibiotic-delivering biological dressings and must be taken into account for future extension to other wound healing agents.
Fil: Alvarez, Gisela Solange. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Metabolismo del Fármaco. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Metabolismo del Fármaco; Argentina
Fil: Hélary, Christophe. Universite Pierre et Marie Curie; Francia. Universite de Paris VI; Francia. Centre National de la Recherche Scientifique; Francia
Fil: Mebert, Andrea Mathilde. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Metabolismo del Fármaco. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Metabolismo del Fármaco; Argentina
Fil: Wang, Xiaolin. Universite Pierre et Marie Curie; Francia. Universite de Paris VI; Francia. Centre National de la Recherche Scientifique; Francia
Fil: Coradin, Thibaud. Universite Pierre et Marie Curie; Francia. Universite de Paris VI; Francia. Centre National de la Recherche Scientifique; Francia
Fil: Desimone, Martín Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Metabolismo del Fármaco. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Metabolismo del Fármaco; Argentina
Materia
Antibiotic
Silica Nanoparticle
Collagen
Drug Release
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/18494

id CONICETDig_53d87582a182b9b1b0d3f262ca0a2c13
oai_identifier_str oai:ri.conicet.gov.ar:11336/18494
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Antibiotic-loaded silica nanoparticle–collagen composite hydrogels with prolonged antimicrobial activity for wound infection preventionAlvarez, Gisela SolangeHélary, ChristopheMebert, Andrea MathildeWang, XiaolinCoradin, ThibaudDesimone, Martín FedericoAntibioticSilica NanoparticleCollagenDrug Releasehttps://purl.org/becyt/ford/3.4https://purl.org/becyt/ford/3Silica–collagen type I nanocomposite hydrogels are evaluated as medicated dressings to prevent infection in chronic wounds. Two antibiotics, gentamicin and rifamycin, are encapsulated in a single step within plain silica nanoparticles. Their antimicrobial efficiency against Pseudomonas aeruginosa and Staphylococcus aureus is assessed. Gentamycin-loaded 500 nm particles can be immobilized at high silica dose in concentrated collagen hydrogels without modifying their fibrillar structure or impacting on their rheological behavior and increases their proteolytic stability. Gentamicin release from the nanocomposites is sustained over 7 days, offering an unparalleled prolonged antibacterial activity. Particle immobilization also decreases their cytotoxicity towards surface-seeded fibroblast cells. Rifamycin-loaded 100 nm particles significantly alter the collagen hydrogel structure at high silica doses. The thus-obtained nanocomposites show no antibacterial efficiency, due to strong adsorption of rifamycin on collagen fibers. The complex interplay of interactions between drugs, silica and collagen is a key factor regulating the properties of these composite hydrogels as antibiotic-delivering biological dressings and must be taken into account for future extension to other wound healing agents.Fil: Alvarez, Gisela Solange. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Metabolismo del Fármaco. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Metabolismo del Fármaco; ArgentinaFil: Hélary, Christophe. Universite Pierre et Marie Curie; Francia. Universite de Paris VI; Francia. Centre National de la Recherche Scientifique; FranciaFil: Mebert, Andrea Mathilde. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Metabolismo del Fármaco. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Metabolismo del Fármaco; ArgentinaFil: Wang, Xiaolin. Universite Pierre et Marie Curie; Francia. Universite de Paris VI; Francia. Centre National de la Recherche Scientifique; FranciaFil: Coradin, Thibaud. Universite Pierre et Marie Curie; Francia. Universite de Paris VI; Francia. Centre National de la Recherche Scientifique; FranciaFil: Desimone, Martín Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Metabolismo del Fármaco. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Metabolismo del Fármaco; ArgentinaRoyal Society of Chemistry2014-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18494Alvarez, Gisela Solange; Hélary, Christophe; Mebert, Andrea Mathilde; Wang, Xiaolin; Coradin, Thibaud; et al.; Antibiotic-loaded silica nanoparticle–collagen composite hydrogels with prolonged antimicrobial activity for wound infection prevention; Royal Society of Chemistry; Journal of Materials Chemistry B; 2; 29; 7-2014; 4660-46702050-750XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://pubs.rsc.org/en/Content/ArticleLanding/2014/TB/c4tb00327f#!divAbstractinfo:eu-repo/semantics/altIdentifier/doi/10.1039/C4TB00327Finfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:43:19Zoai:ri.conicet.gov.ar:11336/18494instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:43:19.55CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Antibiotic-loaded silica nanoparticle–collagen composite hydrogels with prolonged antimicrobial activity for wound infection prevention
title Antibiotic-loaded silica nanoparticle–collagen composite hydrogels with prolonged antimicrobial activity for wound infection prevention
spellingShingle Antibiotic-loaded silica nanoparticle–collagen composite hydrogels with prolonged antimicrobial activity for wound infection prevention
Alvarez, Gisela Solange
Antibiotic
Silica Nanoparticle
Collagen
Drug Release
title_short Antibiotic-loaded silica nanoparticle–collagen composite hydrogels with prolonged antimicrobial activity for wound infection prevention
title_full Antibiotic-loaded silica nanoparticle–collagen composite hydrogels with prolonged antimicrobial activity for wound infection prevention
title_fullStr Antibiotic-loaded silica nanoparticle–collagen composite hydrogels with prolonged antimicrobial activity for wound infection prevention
title_full_unstemmed Antibiotic-loaded silica nanoparticle–collagen composite hydrogels with prolonged antimicrobial activity for wound infection prevention
title_sort Antibiotic-loaded silica nanoparticle–collagen composite hydrogels with prolonged antimicrobial activity for wound infection prevention
dc.creator.none.fl_str_mv Alvarez, Gisela Solange
Hélary, Christophe
Mebert, Andrea Mathilde
Wang, Xiaolin
Coradin, Thibaud
Desimone, Martín Federico
author Alvarez, Gisela Solange
author_facet Alvarez, Gisela Solange
Hélary, Christophe
Mebert, Andrea Mathilde
Wang, Xiaolin
Coradin, Thibaud
Desimone, Martín Federico
author_role author
author2 Hélary, Christophe
Mebert, Andrea Mathilde
Wang, Xiaolin
Coradin, Thibaud
Desimone, Martín Federico
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Antibiotic
Silica Nanoparticle
Collagen
Drug Release
topic Antibiotic
Silica Nanoparticle
Collagen
Drug Release
purl_subject.fl_str_mv https://purl.org/becyt/ford/3.4
https://purl.org/becyt/ford/3
dc.description.none.fl_txt_mv Silica–collagen type I nanocomposite hydrogels are evaluated as medicated dressings to prevent infection in chronic wounds. Two antibiotics, gentamicin and rifamycin, are encapsulated in a single step within plain silica nanoparticles. Their antimicrobial efficiency against Pseudomonas aeruginosa and Staphylococcus aureus is assessed. Gentamycin-loaded 500 nm particles can be immobilized at high silica dose in concentrated collagen hydrogels without modifying their fibrillar structure or impacting on their rheological behavior and increases their proteolytic stability. Gentamicin release from the nanocomposites is sustained over 7 days, offering an unparalleled prolonged antibacterial activity. Particle immobilization also decreases their cytotoxicity towards surface-seeded fibroblast cells. Rifamycin-loaded 100 nm particles significantly alter the collagen hydrogel structure at high silica doses. The thus-obtained nanocomposites show no antibacterial efficiency, due to strong adsorption of rifamycin on collagen fibers. The complex interplay of interactions between drugs, silica and collagen is a key factor regulating the properties of these composite hydrogels as antibiotic-delivering biological dressings and must be taken into account for future extension to other wound healing agents.
Fil: Alvarez, Gisela Solange. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Metabolismo del Fármaco. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Metabolismo del Fármaco; Argentina
Fil: Hélary, Christophe. Universite Pierre et Marie Curie; Francia. Universite de Paris VI; Francia. Centre National de la Recherche Scientifique; Francia
Fil: Mebert, Andrea Mathilde. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Metabolismo del Fármaco. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Metabolismo del Fármaco; Argentina
Fil: Wang, Xiaolin. Universite Pierre et Marie Curie; Francia. Universite de Paris VI; Francia. Centre National de la Recherche Scientifique; Francia
Fil: Coradin, Thibaud. Universite Pierre et Marie Curie; Francia. Universite de Paris VI; Francia. Centre National de la Recherche Scientifique; Francia
Fil: Desimone, Martín Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Metabolismo del Fármaco. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Metabolismo del Fármaco; Argentina
description Silica–collagen type I nanocomposite hydrogels are evaluated as medicated dressings to prevent infection in chronic wounds. Two antibiotics, gentamicin and rifamycin, are encapsulated in a single step within plain silica nanoparticles. Their antimicrobial efficiency against Pseudomonas aeruginosa and Staphylococcus aureus is assessed. Gentamycin-loaded 500 nm particles can be immobilized at high silica dose in concentrated collagen hydrogels without modifying their fibrillar structure or impacting on their rheological behavior and increases their proteolytic stability. Gentamicin release from the nanocomposites is sustained over 7 days, offering an unparalleled prolonged antibacterial activity. Particle immobilization also decreases their cytotoxicity towards surface-seeded fibroblast cells. Rifamycin-loaded 100 nm particles significantly alter the collagen hydrogel structure at high silica doses. The thus-obtained nanocomposites show no antibacterial efficiency, due to strong adsorption of rifamycin on collagen fibers. The complex interplay of interactions between drugs, silica and collagen is a key factor regulating the properties of these composite hydrogels as antibiotic-delivering biological dressings and must be taken into account for future extension to other wound healing agents.
publishDate 2014
dc.date.none.fl_str_mv 2014-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/18494
Alvarez, Gisela Solange; Hélary, Christophe; Mebert, Andrea Mathilde; Wang, Xiaolin; Coradin, Thibaud; et al.; Antibiotic-loaded silica nanoparticle–collagen composite hydrogels with prolonged antimicrobial activity for wound infection prevention; Royal Society of Chemistry; Journal of Materials Chemistry B; 2; 29; 7-2014; 4660-4670
2050-750X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/18494
identifier_str_mv Alvarez, Gisela Solange; Hélary, Christophe; Mebert, Andrea Mathilde; Wang, Xiaolin; Coradin, Thibaud; et al.; Antibiotic-loaded silica nanoparticle–collagen composite hydrogels with prolonged antimicrobial activity for wound infection prevention; Royal Society of Chemistry; Journal of Materials Chemistry B; 2; 29; 7-2014; 4660-4670
2050-750X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://pubs.rsc.org/en/Content/ArticleLanding/2014/TB/c4tb00327f#!divAbstract
info:eu-repo/semantics/altIdentifier/doi/10.1039/C4TB00327F
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Royal Society of Chemistry
publisher.none.fl_str_mv Royal Society of Chemistry
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614468375412736
score 13.070432