Cascades, thermalization, and eddy viscosity in helical Galerkin truncated Euler flows

Autores
Krstulovic, G.; Mininni, Pablo Daniel; Brachet, M. E.; Pouquet, A.
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The dynamics of the truncated Euler equations with helical initial conditions are studied. Transient energy and helicity cascades leading to Kraichnan helical absolute equilibrium at small scales, including a linear scaling of the relative helicity spectrum are obtained. Strong helicity effects are found using initial data concentrated at high wave numbers. Using low-wave-number initial conditions, the results of Cichowlas [Phys. Rev. Lett. 95, 264502 (2005)] are extended to helical flows. Similarities between the turbulent transient evolution of the ideal (time-reversible) system and viscous helical flows are found. Using an argument in the manner of Frisch [Phys. Rev. Lett. 101, 144501 (2008)], the excess of relative helicity found at small scales in the viscous run is related to the thermalization of the ideal flow. The observed differences in the behavior of truncated Euler and (constant viscosity) Navier-Stokes are qualitatively understood using the concept of eddy viscosity. The large scales of truncated Euler equations are then shown to follow quantitatively an effective Navier-Stokes dynamics based on a variable (scale dependent) eddy viscosity. © 2009 The American Physical Society.
Fil: Krstulovic, G.. Laboratoire de Physique Statistique; Francia
Fil: Mininni, Pablo Daniel. Universidad de Buenos Aires; Argentina. National Center for Atmospheric Research; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Brachet, M. E.. National Center for Atmospheric Research; Estados Unidos
Fil: Pouquet, A.. National Center for Atmospheric Research; Estados Unidos
Materia
Turbulence
Statistical Mechanics
Helicity
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/60772

id CONICETDig_53833db1f26f84995e577e776f3cc1d5
oai_identifier_str oai:ri.conicet.gov.ar:11336/60772
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Cascades, thermalization, and eddy viscosity in helical Galerkin truncated Euler flowsKrstulovic, G.Mininni, Pablo DanielBrachet, M. E.Pouquet, A.TurbulenceStatistical MechanicsHelicityhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The dynamics of the truncated Euler equations with helical initial conditions are studied. Transient energy and helicity cascades leading to Kraichnan helical absolute equilibrium at small scales, including a linear scaling of the relative helicity spectrum are obtained. Strong helicity effects are found using initial data concentrated at high wave numbers. Using low-wave-number initial conditions, the results of Cichowlas [Phys. Rev. Lett. 95, 264502 (2005)] are extended to helical flows. Similarities between the turbulent transient evolution of the ideal (time-reversible) system and viscous helical flows are found. Using an argument in the manner of Frisch [Phys. Rev. Lett. 101, 144501 (2008)], the excess of relative helicity found at small scales in the viscous run is related to the thermalization of the ideal flow. The observed differences in the behavior of truncated Euler and (constant viscosity) Navier-Stokes are qualitatively understood using the concept of eddy viscosity. The large scales of truncated Euler equations are then shown to follow quantitatively an effective Navier-Stokes dynamics based on a variable (scale dependent) eddy viscosity. © 2009 The American Physical Society.Fil: Krstulovic, G.. Laboratoire de Physique Statistique; FranciaFil: Mininni, Pablo Daniel. Universidad de Buenos Aires; Argentina. National Center for Atmospheric Research; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Brachet, M. E.. National Center for Atmospheric Research; Estados UnidosFil: Pouquet, A.. National Center for Atmospheric Research; Estados UnidosAmerican Physical Society2009-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/60772Krstulovic, G.; Mininni, Pablo Daniel; Brachet, M. E.; Pouquet, A.; Cascades, thermalization, and eddy viscosity in helical Galerkin truncated Euler flows; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 79; 5; 12-2009; 563041-5630451539-3755CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.79.056304info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:25:10Zoai:ri.conicet.gov.ar:11336/60772instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:25:10.474CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Cascades, thermalization, and eddy viscosity in helical Galerkin truncated Euler flows
title Cascades, thermalization, and eddy viscosity in helical Galerkin truncated Euler flows
spellingShingle Cascades, thermalization, and eddy viscosity in helical Galerkin truncated Euler flows
Krstulovic, G.
Turbulence
Statistical Mechanics
Helicity
title_short Cascades, thermalization, and eddy viscosity in helical Galerkin truncated Euler flows
title_full Cascades, thermalization, and eddy viscosity in helical Galerkin truncated Euler flows
title_fullStr Cascades, thermalization, and eddy viscosity in helical Galerkin truncated Euler flows
title_full_unstemmed Cascades, thermalization, and eddy viscosity in helical Galerkin truncated Euler flows
title_sort Cascades, thermalization, and eddy viscosity in helical Galerkin truncated Euler flows
dc.creator.none.fl_str_mv Krstulovic, G.
Mininni, Pablo Daniel
Brachet, M. E.
Pouquet, A.
author Krstulovic, G.
author_facet Krstulovic, G.
Mininni, Pablo Daniel
Brachet, M. E.
Pouquet, A.
author_role author
author2 Mininni, Pablo Daniel
Brachet, M. E.
Pouquet, A.
author2_role author
author
author
dc.subject.none.fl_str_mv Turbulence
Statistical Mechanics
Helicity
topic Turbulence
Statistical Mechanics
Helicity
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The dynamics of the truncated Euler equations with helical initial conditions are studied. Transient energy and helicity cascades leading to Kraichnan helical absolute equilibrium at small scales, including a linear scaling of the relative helicity spectrum are obtained. Strong helicity effects are found using initial data concentrated at high wave numbers. Using low-wave-number initial conditions, the results of Cichowlas [Phys. Rev. Lett. 95, 264502 (2005)] are extended to helical flows. Similarities between the turbulent transient evolution of the ideal (time-reversible) system and viscous helical flows are found. Using an argument in the manner of Frisch [Phys. Rev. Lett. 101, 144501 (2008)], the excess of relative helicity found at small scales in the viscous run is related to the thermalization of the ideal flow. The observed differences in the behavior of truncated Euler and (constant viscosity) Navier-Stokes are qualitatively understood using the concept of eddy viscosity. The large scales of truncated Euler equations are then shown to follow quantitatively an effective Navier-Stokes dynamics based on a variable (scale dependent) eddy viscosity. © 2009 The American Physical Society.
Fil: Krstulovic, G.. Laboratoire de Physique Statistique; Francia
Fil: Mininni, Pablo Daniel. Universidad de Buenos Aires; Argentina. National Center for Atmospheric Research; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Brachet, M. E.. National Center for Atmospheric Research; Estados Unidos
Fil: Pouquet, A.. National Center for Atmospheric Research; Estados Unidos
description The dynamics of the truncated Euler equations with helical initial conditions are studied. Transient energy and helicity cascades leading to Kraichnan helical absolute equilibrium at small scales, including a linear scaling of the relative helicity spectrum are obtained. Strong helicity effects are found using initial data concentrated at high wave numbers. Using low-wave-number initial conditions, the results of Cichowlas [Phys. Rev. Lett. 95, 264502 (2005)] are extended to helical flows. Similarities between the turbulent transient evolution of the ideal (time-reversible) system and viscous helical flows are found. Using an argument in the manner of Frisch [Phys. Rev. Lett. 101, 144501 (2008)], the excess of relative helicity found at small scales in the viscous run is related to the thermalization of the ideal flow. The observed differences in the behavior of truncated Euler and (constant viscosity) Navier-Stokes are qualitatively understood using the concept of eddy viscosity. The large scales of truncated Euler equations are then shown to follow quantitatively an effective Navier-Stokes dynamics based on a variable (scale dependent) eddy viscosity. © 2009 The American Physical Society.
publishDate 2009
dc.date.none.fl_str_mv 2009-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/60772
Krstulovic, G.; Mininni, Pablo Daniel; Brachet, M. E.; Pouquet, A.; Cascades, thermalization, and eddy viscosity in helical Galerkin truncated Euler flows; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 79; 5; 12-2009; 563041-563045
1539-3755
CONICET Digital
CONICET
url http://hdl.handle.net/11336/60772
identifier_str_mv Krstulovic, G.; Mininni, Pablo Daniel; Brachet, M. E.; Pouquet, A.; Cascades, thermalization, and eddy viscosity in helical Galerkin truncated Euler flows; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 79; 5; 12-2009; 563041-563045
1539-3755
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.79.056304
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083396914118656
score 13.22299