Core-shell iron oxide@stellate mesoporous silica for combined near-infrared photothermia and drug delivery: Influence of pH and surface chemistry

Autores
Adam, Alexandre; Harlepp, Sébastien; Ghilini, Fiorela; Cotin, Geoffrey; Freis, Barbara; Goetz, Jacky; Bégin, Sylvie; Tasso, Mariana Patricia; Mertz, Damien
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The chemical design of smart nanocarriers, providing in one nanoformulation combined anticancer therapies, still remains a challenge in the field of nanomedicine. Among nanomaterials, iron oxide-based core-shell nanostructures have been already studied for their intrinsic magnetic hyperthermia features that may be coupled with drug delivery. However, despite the great interest today for photo-induced hyperthermia, very few studies investigated the potential of such nanocarriers to combine photothermia and drug delivery. In this work, our aim was to design functional iron oxide@stellate mesoporous silica nanoparticles (denoted IO@STMS NPs) loaded with a drug and able to combine in a same formulation near-infrared (NIR) light induced photothermia with antitumor drug release. Herein, the NIR photothermal properties (SAR, specific absorption rates) of such nanomaterials were quantified for the first time as a function of the laser power and the NP amount. Aside the response to NIR light, the conditions to obtain very high drug loading (drug payloads up to 91 wt%) of the model antitumor drug doxorubicin (DOX) were optimized by varying different parameters, such as the NP surface chemistry (BARE (Si-OH), aminopropylsiloxane (APTES) and isobutyramide (IBAM)) and the pH of the drug impregnation aqueous solution. The drug release study of these core-shell systems in the presence or absence of NIR light demonstrated that the DOX release efficiency is mainly influenced by two parameters: surface chemistry (BARE ≥ IBAM ≥ APTES) and pH (pH 5.5 ≥ pH 6.5 ≥ pH 7.5). Furthermore, the temperature profiles under NIR light are found similar and independent from the pH range, the surface chemistry and the cycle number. Hence, the combination of local photothermia with lysosomal-like pH induced drug delivery (up to 40% release of the loaded drug) with these nanostructures could open the way towards new drug delivery nanoplatforms for nanomedecine applications.
Fil: Adam, Alexandre. Universite de Strasbourg. Unite de Recherche.; Francia
Fil: Harlepp, Sébastien. Université de Strasbourg; Francia
Fil: Ghilini, Fiorela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Fil: Cotin, Geoffrey. Université de Strasbourg; Francia
Fil: Freis, Barbara. Université de Strasbourg; Francia
Fil: Goetz, Jacky. Université de Strasbourg; Francia. Inserm; Francia
Fil: Bégin, Sylvie. Université de Strasbourg; Francia
Fil: Tasso, Mariana Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Fil: Mertz, Damien. Université de Strasbourg; Francia
Materia
DRUG DELIVERY
IRON OXIDE@MESOPOROUS SILICA
NEAR-INFRARED PHOTO-INDUCED HYPERTHERMIA
SURFACE CHEMISTRY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/205173

id CONICETDig_5360458b1057ca13762e636d2ddb5c9a
oai_identifier_str oai:ri.conicet.gov.ar:11336/205173
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Core-shell iron oxide@stellate mesoporous silica for combined near-infrared photothermia and drug delivery: Influence of pH and surface chemistryAdam, AlexandreHarlepp, SébastienGhilini, FiorelaCotin, GeoffreyFreis, BarbaraGoetz, JackyBégin, SylvieTasso, Mariana PatriciaMertz, DamienDRUG DELIVERYIRON OXIDE@MESOPOROUS SILICANEAR-INFRARED PHOTO-INDUCED HYPERTHERMIASURFACE CHEMISTRYhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1The chemical design of smart nanocarriers, providing in one nanoformulation combined anticancer therapies, still remains a challenge in the field of nanomedicine. Among nanomaterials, iron oxide-based core-shell nanostructures have been already studied for their intrinsic magnetic hyperthermia features that may be coupled with drug delivery. However, despite the great interest today for photo-induced hyperthermia, very few studies investigated the potential of such nanocarriers to combine photothermia and drug delivery. In this work, our aim was to design functional iron oxide@stellate mesoporous silica nanoparticles (denoted IO@STMS NPs) loaded with a drug and able to combine in a same formulation near-infrared (NIR) light induced photothermia with antitumor drug release. Herein, the NIR photothermal properties (SAR, specific absorption rates) of such nanomaterials were quantified for the first time as a function of the laser power and the NP amount. Aside the response to NIR light, the conditions to obtain very high drug loading (drug payloads up to 91 wt%) of the model antitumor drug doxorubicin (DOX) were optimized by varying different parameters, such as the NP surface chemistry (BARE (Si-OH), aminopropylsiloxane (APTES) and isobutyramide (IBAM)) and the pH of the drug impregnation aqueous solution. The drug release study of these core-shell systems in the presence or absence of NIR light demonstrated that the DOX release efficiency is mainly influenced by two parameters: surface chemistry (BARE ≥ IBAM ≥ APTES) and pH (pH 5.5 ≥ pH 6.5 ≥ pH 7.5). Furthermore, the temperature profiles under NIR light are found similar and independent from the pH range, the surface chemistry and the cycle number. Hence, the combination of local photothermia with lysosomal-like pH induced drug delivery (up to 40% release of the loaded drug) with these nanostructures could open the way towards new drug delivery nanoplatforms for nanomedecine applications.Fil: Adam, Alexandre. Universite de Strasbourg. Unite de Recherche.; FranciaFil: Harlepp, Sébastien. Université de Strasbourg; FranciaFil: Ghilini, Fiorela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Cotin, Geoffrey. Université de Strasbourg; FranciaFil: Freis, Barbara. Université de Strasbourg; FranciaFil: Goetz, Jacky. Université de Strasbourg; Francia. Inserm; FranciaFil: Bégin, Sylvie. Université de Strasbourg; FranciaFil: Tasso, Mariana Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Mertz, Damien. Université de Strasbourg; FranciaElsevier Science2022-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/205173Adam, Alexandre; Harlepp, Sébastien; Ghilini, Fiorela; Cotin, Geoffrey; Freis, Barbara; et al.; Core-shell iron oxide@stellate mesoporous silica for combined near-infrared photothermia and drug delivery: Influence of pH and surface chemistry; Elsevier Science; Colloids and Surfaces A: Physicochemical and Engineering Aspects; 640; 128407; 5-2022; 1-120927-7757CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0927775722001613info:eu-repo/semantics/altIdentifier/doi/10.1016/j.colsurfa.2022.128407info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:40:37Zoai:ri.conicet.gov.ar:11336/205173instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:40:37.541CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Core-shell iron oxide@stellate mesoporous silica for combined near-infrared photothermia and drug delivery: Influence of pH and surface chemistry
title Core-shell iron oxide@stellate mesoporous silica for combined near-infrared photothermia and drug delivery: Influence of pH and surface chemistry
spellingShingle Core-shell iron oxide@stellate mesoporous silica for combined near-infrared photothermia and drug delivery: Influence of pH and surface chemistry
Adam, Alexandre
DRUG DELIVERY
IRON OXIDE@MESOPOROUS SILICA
NEAR-INFRARED PHOTO-INDUCED HYPERTHERMIA
SURFACE CHEMISTRY
title_short Core-shell iron oxide@stellate mesoporous silica for combined near-infrared photothermia and drug delivery: Influence of pH and surface chemistry
title_full Core-shell iron oxide@stellate mesoporous silica for combined near-infrared photothermia and drug delivery: Influence of pH and surface chemistry
title_fullStr Core-shell iron oxide@stellate mesoporous silica for combined near-infrared photothermia and drug delivery: Influence of pH and surface chemistry
title_full_unstemmed Core-shell iron oxide@stellate mesoporous silica for combined near-infrared photothermia and drug delivery: Influence of pH and surface chemistry
title_sort Core-shell iron oxide@stellate mesoporous silica for combined near-infrared photothermia and drug delivery: Influence of pH and surface chemistry
dc.creator.none.fl_str_mv Adam, Alexandre
Harlepp, Sébastien
Ghilini, Fiorela
Cotin, Geoffrey
Freis, Barbara
Goetz, Jacky
Bégin, Sylvie
Tasso, Mariana Patricia
Mertz, Damien
author Adam, Alexandre
author_facet Adam, Alexandre
Harlepp, Sébastien
Ghilini, Fiorela
Cotin, Geoffrey
Freis, Barbara
Goetz, Jacky
Bégin, Sylvie
Tasso, Mariana Patricia
Mertz, Damien
author_role author
author2 Harlepp, Sébastien
Ghilini, Fiorela
Cotin, Geoffrey
Freis, Barbara
Goetz, Jacky
Bégin, Sylvie
Tasso, Mariana Patricia
Mertz, Damien
author2_role author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv DRUG DELIVERY
IRON OXIDE@MESOPOROUS SILICA
NEAR-INFRARED PHOTO-INDUCED HYPERTHERMIA
SURFACE CHEMISTRY
topic DRUG DELIVERY
IRON OXIDE@MESOPOROUS SILICA
NEAR-INFRARED PHOTO-INDUCED HYPERTHERMIA
SURFACE CHEMISTRY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The chemical design of smart nanocarriers, providing in one nanoformulation combined anticancer therapies, still remains a challenge in the field of nanomedicine. Among nanomaterials, iron oxide-based core-shell nanostructures have been already studied for their intrinsic magnetic hyperthermia features that may be coupled with drug delivery. However, despite the great interest today for photo-induced hyperthermia, very few studies investigated the potential of such nanocarriers to combine photothermia and drug delivery. In this work, our aim was to design functional iron oxide@stellate mesoporous silica nanoparticles (denoted IO@STMS NPs) loaded with a drug and able to combine in a same formulation near-infrared (NIR) light induced photothermia with antitumor drug release. Herein, the NIR photothermal properties (SAR, specific absorption rates) of such nanomaterials were quantified for the first time as a function of the laser power and the NP amount. Aside the response to NIR light, the conditions to obtain very high drug loading (drug payloads up to 91 wt%) of the model antitumor drug doxorubicin (DOX) were optimized by varying different parameters, such as the NP surface chemistry (BARE (Si-OH), aminopropylsiloxane (APTES) and isobutyramide (IBAM)) and the pH of the drug impregnation aqueous solution. The drug release study of these core-shell systems in the presence or absence of NIR light demonstrated that the DOX release efficiency is mainly influenced by two parameters: surface chemistry (BARE ≥ IBAM ≥ APTES) and pH (pH 5.5 ≥ pH 6.5 ≥ pH 7.5). Furthermore, the temperature profiles under NIR light are found similar and independent from the pH range, the surface chemistry and the cycle number. Hence, the combination of local photothermia with lysosomal-like pH induced drug delivery (up to 40% release of the loaded drug) with these nanostructures could open the way towards new drug delivery nanoplatforms for nanomedecine applications.
Fil: Adam, Alexandre. Universite de Strasbourg. Unite de Recherche.; Francia
Fil: Harlepp, Sébastien. Université de Strasbourg; Francia
Fil: Ghilini, Fiorela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Fil: Cotin, Geoffrey. Université de Strasbourg; Francia
Fil: Freis, Barbara. Université de Strasbourg; Francia
Fil: Goetz, Jacky. Université de Strasbourg; Francia. Inserm; Francia
Fil: Bégin, Sylvie. Université de Strasbourg; Francia
Fil: Tasso, Mariana Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Fil: Mertz, Damien. Université de Strasbourg; Francia
description The chemical design of smart nanocarriers, providing in one nanoformulation combined anticancer therapies, still remains a challenge in the field of nanomedicine. Among nanomaterials, iron oxide-based core-shell nanostructures have been already studied for their intrinsic magnetic hyperthermia features that may be coupled with drug delivery. However, despite the great interest today for photo-induced hyperthermia, very few studies investigated the potential of such nanocarriers to combine photothermia and drug delivery. In this work, our aim was to design functional iron oxide@stellate mesoporous silica nanoparticles (denoted IO@STMS NPs) loaded with a drug and able to combine in a same formulation near-infrared (NIR) light induced photothermia with antitumor drug release. Herein, the NIR photothermal properties (SAR, specific absorption rates) of such nanomaterials were quantified for the first time as a function of the laser power and the NP amount. Aside the response to NIR light, the conditions to obtain very high drug loading (drug payloads up to 91 wt%) of the model antitumor drug doxorubicin (DOX) were optimized by varying different parameters, such as the NP surface chemistry (BARE (Si-OH), aminopropylsiloxane (APTES) and isobutyramide (IBAM)) and the pH of the drug impregnation aqueous solution. The drug release study of these core-shell systems in the presence or absence of NIR light demonstrated that the DOX release efficiency is mainly influenced by two parameters: surface chemistry (BARE ≥ IBAM ≥ APTES) and pH (pH 5.5 ≥ pH 6.5 ≥ pH 7.5). Furthermore, the temperature profiles under NIR light are found similar and independent from the pH range, the surface chemistry and the cycle number. Hence, the combination of local photothermia with lysosomal-like pH induced drug delivery (up to 40% release of the loaded drug) with these nanostructures could open the way towards new drug delivery nanoplatforms for nanomedecine applications.
publishDate 2022
dc.date.none.fl_str_mv 2022-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/205173
Adam, Alexandre; Harlepp, Sébastien; Ghilini, Fiorela; Cotin, Geoffrey; Freis, Barbara; et al.; Core-shell iron oxide@stellate mesoporous silica for combined near-infrared photothermia and drug delivery: Influence of pH and surface chemistry; Elsevier Science; Colloids and Surfaces A: Physicochemical and Engineering Aspects; 640; 128407; 5-2022; 1-12
0927-7757
CONICET Digital
CONICET
url http://hdl.handle.net/11336/205173
identifier_str_mv Adam, Alexandre; Harlepp, Sébastien; Ghilini, Fiorela; Cotin, Geoffrey; Freis, Barbara; et al.; Core-shell iron oxide@stellate mesoporous silica for combined near-infrared photothermia and drug delivery: Influence of pH and surface chemistry; Elsevier Science; Colloids and Surfaces A: Physicochemical and Engineering Aspects; 640; 128407; 5-2022; 1-12
0927-7757
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0927775722001613
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.colsurfa.2022.128407
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614435219439616
score 13.070432