A note on Smoothed Functional Inverse Regression
- Autores
- Forzani, Liliana Maria; Cook, R. Dennis
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Estimation in the context of functional data analysis is almost always non-parametric, since the object to be estimated lives in an infinite dimensional space. That is the case for the functional linear model with a real response and a process as covariables. In a recent paper Ferré and Yao state that the estimation of the Effective Dimension Reduction (EDR) subspace via SIR has parametric order. We show that a strong condition is needed for their statement to be true.
Fil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Cook, R. Dennis. University of Minnesota; Estados Unidos - Materia
-
Dimension Reduction
Functional Data Analysis
Inverse Regression - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/84268
Ver los metadatos del registro completo
id |
CONICETDig_534fa3a801bdfc4d5f15ca930c8ee55d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/84268 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A note on Smoothed Functional Inverse RegressionForzani, Liliana MariaCook, R. DennisDimension ReductionFunctional Data AnalysisInverse Regressionhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Estimation in the context of functional data analysis is almost always non-parametric, since the object to be estimated lives in an infinite dimensional space. That is the case for the functional linear model with a real response and a process as covariables. In a recent paper Ferré and Yao state that the estimation of the Effective Dimension Reduction (EDR) subspace via SIR has parametric order. We show that a strong condition is needed for their statement to be true.Fil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Cook, R. Dennis. University of Minnesota; Estados UnidosStatistica Sinica2007-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/84268Forzani, Liliana Maria; Cook, R. Dennis; A note on Smoothed Functional Inverse Regression; Statistica Sinica; Statistica Sinica; 17; 4; 12-2007; 1677-16811017-0405CONICET DigitalCONICETenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:55:07Zoai:ri.conicet.gov.ar:11336/84268instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:55:07.468CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A note on Smoothed Functional Inverse Regression |
title |
A note on Smoothed Functional Inverse Regression |
spellingShingle |
A note on Smoothed Functional Inverse Regression Forzani, Liliana Maria Dimension Reduction Functional Data Analysis Inverse Regression |
title_short |
A note on Smoothed Functional Inverse Regression |
title_full |
A note on Smoothed Functional Inverse Regression |
title_fullStr |
A note on Smoothed Functional Inverse Regression |
title_full_unstemmed |
A note on Smoothed Functional Inverse Regression |
title_sort |
A note on Smoothed Functional Inverse Regression |
dc.creator.none.fl_str_mv |
Forzani, Liliana Maria Cook, R. Dennis |
author |
Forzani, Liliana Maria |
author_facet |
Forzani, Liliana Maria Cook, R. Dennis |
author_role |
author |
author2 |
Cook, R. Dennis |
author2_role |
author |
dc.subject.none.fl_str_mv |
Dimension Reduction Functional Data Analysis Inverse Regression |
topic |
Dimension Reduction Functional Data Analysis Inverse Regression |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Estimation in the context of functional data analysis is almost always non-parametric, since the object to be estimated lives in an infinite dimensional space. That is the case for the functional linear model with a real response and a process as covariables. In a recent paper Ferré and Yao state that the estimation of the Effective Dimension Reduction (EDR) subspace via SIR has parametric order. We show that a strong condition is needed for their statement to be true. Fil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Cook, R. Dennis. University of Minnesota; Estados Unidos |
description |
Estimation in the context of functional data analysis is almost always non-parametric, since the object to be estimated lives in an infinite dimensional space. That is the case for the functional linear model with a real response and a process as covariables. In a recent paper Ferré and Yao state that the estimation of the Effective Dimension Reduction (EDR) subspace via SIR has parametric order. We show that a strong condition is needed for their statement to be true. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/84268 Forzani, Liliana Maria; Cook, R. Dennis; A note on Smoothed Functional Inverse Regression; Statistica Sinica; Statistica Sinica; 17; 4; 12-2007; 1677-1681 1017-0405 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/84268 |
identifier_str_mv |
Forzani, Liliana Maria; Cook, R. Dennis; A note on Smoothed Functional Inverse Regression; Statistica Sinica; Statistica Sinica; 17; 4; 12-2007; 1677-1681 1017-0405 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Statistica Sinica |
publisher.none.fl_str_mv |
Statistica Sinica |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613664085114880 |
score |
13.070432 |