Differences in prefrontal and motor structures learning dynamics depend on task complexity: a neural network model
- Autores
- Lew, Sergio Eduardo; Rey, Hernan Gonzalo; Gutnisky, D. A.; Zanutto, Bonifacio Silvano
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Neurons in the basal ganglia (BG) of monkeys learning a simple visual discrimination (VD) task show faster changes in activity than those in the prefrontal cortex (PFC). This motivated the hypothesis that changes in the BG activity can ''lead'' those in the PFC. Given that the PFC is a key player in the learning of complex tasks, we tested the former hypothesis by using a neural network model that learns simple and complex contingencies as VD and delayed matching to sample (DMTS) tasks. Even though the model accounted for the results in the VD task no such ''lead'' was observed in the DMTS task. We propose that when the task requires learning high-order contingencies, such as in the DMTS case, motor structures quickly select the subset of responses allowing the subject to obtain reward, but learning in the cortico-BG loop progresses in a concurrent way in order to maximize reward.
Fil: Lew, Sergio Eduardo. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina
Fil: Rey, Hernan Gonzalo. Universidad de Buenos Aires. Facultad de Ingenieria. Instituto de Ingeniería Biomédica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina
Fil: Gutnisky, D. A.. Texas A&M University; Estados Unidos
Fil: Zanutto, Bonifacio Silvano. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Universidad de Buenos Aires. Facultad de Ingenieria. Instituto de Ingeniería Biomédica; Argentina - Materia
-
Prefontal Cortex
Premotor Cortex
Basal Ganglia
Dopamine - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/26188
Ver los metadatos del registro completo
id |
CONICETDig_532612b45888706ec964d5bc3a812c12 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/26188 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Differences in prefrontal and motor structures learning dynamics depend on task complexity: a neural network modelLew, Sergio EduardoRey, Hernan GonzaloGutnisky, D. A.Zanutto, Bonifacio SilvanoPrefontal CortexPremotor CortexBasal GangliaDopaminehttps://purl.org/becyt/ford/2.6https://purl.org/becyt/ford/2Neurons in the basal ganglia (BG) of monkeys learning a simple visual discrimination (VD) task show faster changes in activity than those in the prefrontal cortex (PFC). This motivated the hypothesis that changes in the BG activity can ''lead'' those in the PFC. Given that the PFC is a key player in the learning of complex tasks, we tested the former hypothesis by using a neural network model that learns simple and complex contingencies as VD and delayed matching to sample (DMTS) tasks. Even though the model accounted for the results in the VD task no such ''lead'' was observed in the DMTS task. We propose that when the task requires learning high-order contingencies, such as in the DMTS case, motor structures quickly select the subset of responses allowing the subject to obtain reward, but learning in the cortico-BG loop progresses in a concurrent way in order to maximize reward.Fil: Lew, Sergio Eduardo. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Rey, Hernan Gonzalo. Universidad de Buenos Aires. Facultad de Ingenieria. Instituto de Ingeniería Biomédica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Gutnisky, D. A.. Texas A&M University; Estados UnidosFil: Zanutto, Bonifacio Silvano. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Universidad de Buenos Aires. Facultad de Ingenieria. Instituto de Ingeniería Biomédica; ArgentinaElsevier Science2008-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/26188Lew, Sergio Eduardo; Rey, Hernan Gonzalo; Gutnisky, D. A.; Zanutto, Bonifacio Silvano; Differences in prefrontal and motor structures learning dynamics depend on task complexity: a neural network model; Elsevier Science; Neurocomputing; 71; 13-15; 8-2008; 2782-27930925-23120925-2312CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0925231207003104info:eu-repo/semantics/altIdentifier/doi/10.1016/j.neucom.2007.09.010info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:25:37Zoai:ri.conicet.gov.ar:11336/26188instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:25:37.929CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Differences in prefrontal and motor structures learning dynamics depend on task complexity: a neural network model |
title |
Differences in prefrontal and motor structures learning dynamics depend on task complexity: a neural network model |
spellingShingle |
Differences in prefrontal and motor structures learning dynamics depend on task complexity: a neural network model Lew, Sergio Eduardo Prefontal Cortex Premotor Cortex Basal Ganglia Dopamine |
title_short |
Differences in prefrontal and motor structures learning dynamics depend on task complexity: a neural network model |
title_full |
Differences in prefrontal and motor structures learning dynamics depend on task complexity: a neural network model |
title_fullStr |
Differences in prefrontal and motor structures learning dynamics depend on task complexity: a neural network model |
title_full_unstemmed |
Differences in prefrontal and motor structures learning dynamics depend on task complexity: a neural network model |
title_sort |
Differences in prefrontal and motor structures learning dynamics depend on task complexity: a neural network model |
dc.creator.none.fl_str_mv |
Lew, Sergio Eduardo Rey, Hernan Gonzalo Gutnisky, D. A. Zanutto, Bonifacio Silvano |
author |
Lew, Sergio Eduardo |
author_facet |
Lew, Sergio Eduardo Rey, Hernan Gonzalo Gutnisky, D. A. Zanutto, Bonifacio Silvano |
author_role |
author |
author2 |
Rey, Hernan Gonzalo Gutnisky, D. A. Zanutto, Bonifacio Silvano |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Prefontal Cortex Premotor Cortex Basal Ganglia Dopamine |
topic |
Prefontal Cortex Premotor Cortex Basal Ganglia Dopamine |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.6 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Neurons in the basal ganglia (BG) of monkeys learning a simple visual discrimination (VD) task show faster changes in activity than those in the prefrontal cortex (PFC). This motivated the hypothesis that changes in the BG activity can ''lead'' those in the PFC. Given that the PFC is a key player in the learning of complex tasks, we tested the former hypothesis by using a neural network model that learns simple and complex contingencies as VD and delayed matching to sample (DMTS) tasks. Even though the model accounted for the results in the VD task no such ''lead'' was observed in the DMTS task. We propose that when the task requires learning high-order contingencies, such as in the DMTS case, motor structures quickly select the subset of responses allowing the subject to obtain reward, but learning in the cortico-BG loop progresses in a concurrent way in order to maximize reward. Fil: Lew, Sergio Eduardo. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina Fil: Rey, Hernan Gonzalo. Universidad de Buenos Aires. Facultad de Ingenieria. Instituto de Ingeniería Biomédica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina Fil: Gutnisky, D. A.. Texas A&M University; Estados Unidos Fil: Zanutto, Bonifacio Silvano. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Universidad de Buenos Aires. Facultad de Ingenieria. Instituto de Ingeniería Biomédica; Argentina |
description |
Neurons in the basal ganglia (BG) of monkeys learning a simple visual discrimination (VD) task show faster changes in activity than those in the prefrontal cortex (PFC). This motivated the hypothesis that changes in the BG activity can ''lead'' those in the PFC. Given that the PFC is a key player in the learning of complex tasks, we tested the former hypothesis by using a neural network model that learns simple and complex contingencies as VD and delayed matching to sample (DMTS) tasks. Even though the model accounted for the results in the VD task no such ''lead'' was observed in the DMTS task. We propose that when the task requires learning high-order contingencies, such as in the DMTS case, motor structures quickly select the subset of responses allowing the subject to obtain reward, but learning in the cortico-BG loop progresses in a concurrent way in order to maximize reward. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/26188 Lew, Sergio Eduardo; Rey, Hernan Gonzalo; Gutnisky, D. A.; Zanutto, Bonifacio Silvano; Differences in prefrontal and motor structures learning dynamics depend on task complexity: a neural network model; Elsevier Science; Neurocomputing; 71; 13-15; 8-2008; 2782-2793 0925-2312 0925-2312 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/26188 |
identifier_str_mv |
Lew, Sergio Eduardo; Rey, Hernan Gonzalo; Gutnisky, D. A.; Zanutto, Bonifacio Silvano; Differences in prefrontal and motor structures learning dynamics depend on task complexity: a neural network model; Elsevier Science; Neurocomputing; 71; 13-15; 8-2008; 2782-2793 0925-2312 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0925231207003104 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.neucom.2007.09.010 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082693161287680 |
score |
12.891075 |