Differences in prefrontal and motor structures learning dynamics depend on task complexity: a neural network model

Autores
Lew, Sergio Eduardo; Rey, Hernan Gonzalo; Gutnisky, D. A.; Zanutto, Bonifacio Silvano
Año de publicación
2008
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Neurons in the basal ganglia (BG) of monkeys learning a simple visual discrimination (VD) task show faster changes in activity than those in the prefrontal cortex (PFC). This motivated the hypothesis that changes in the BG activity can ''lead'' those in the PFC. Given that the PFC is a key player in the learning of complex tasks, we tested the former hypothesis by using a neural network model that learns simple and complex contingencies as VD and delayed matching to sample (DMTS) tasks. Even though the model accounted for the results in the VD task no such ''lead'' was observed in the DMTS task. We propose that when the task requires learning high-order contingencies, such as in the DMTS case, motor structures quickly select the subset of responses allowing the subject to obtain reward, but learning in the cortico-BG loop progresses in a concurrent way in order to maximize reward.
Fil: Lew, Sergio Eduardo. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina
Fil: Rey, Hernan Gonzalo. Universidad de Buenos Aires. Facultad de Ingenieria. Instituto de Ingeniería Biomédica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina
Fil: Gutnisky, D. A.. Texas A&M University; Estados Unidos
Fil: Zanutto, Bonifacio Silvano. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Universidad de Buenos Aires. Facultad de Ingenieria. Instituto de Ingeniería Biomédica; Argentina
Materia
Prefontal Cortex
Premotor Cortex
Basal Ganglia
Dopamine
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/26188

id CONICETDig_532612b45888706ec964d5bc3a812c12
oai_identifier_str oai:ri.conicet.gov.ar:11336/26188
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Differences in prefrontal and motor structures learning dynamics depend on task complexity: a neural network modelLew, Sergio EduardoRey, Hernan GonzaloGutnisky, D. A.Zanutto, Bonifacio SilvanoPrefontal CortexPremotor CortexBasal GangliaDopaminehttps://purl.org/becyt/ford/2.6https://purl.org/becyt/ford/2Neurons in the basal ganglia (BG) of monkeys learning a simple visual discrimination (VD) task show faster changes in activity than those in the prefrontal cortex (PFC). This motivated the hypothesis that changes in the BG activity can ''lead'' those in the PFC. Given that the PFC is a key player in the learning of complex tasks, we tested the former hypothesis by using a neural network model that learns simple and complex contingencies as VD and delayed matching to sample (DMTS) tasks. Even though the model accounted for the results in the VD task no such ''lead'' was observed in the DMTS task. We propose that when the task requires learning high-order contingencies, such as in the DMTS case, motor structures quickly select the subset of responses allowing the subject to obtain reward, but learning in the cortico-BG loop progresses in a concurrent way in order to maximize reward.Fil: Lew, Sergio Eduardo. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Rey, Hernan Gonzalo. Universidad de Buenos Aires. Facultad de Ingenieria. Instituto de Ingeniería Biomédica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Gutnisky, D. A.. Texas A&M University; Estados UnidosFil: Zanutto, Bonifacio Silvano. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Universidad de Buenos Aires. Facultad de Ingenieria. Instituto de Ingeniería Biomédica; ArgentinaElsevier Science2008-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/26188Lew, Sergio Eduardo; Rey, Hernan Gonzalo; Gutnisky, D. A.; Zanutto, Bonifacio Silvano; Differences in prefrontal and motor structures learning dynamics depend on task complexity: a neural network model; Elsevier Science; Neurocomputing; 71; 13-15; 8-2008; 2782-27930925-23120925-2312CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0925231207003104info:eu-repo/semantics/altIdentifier/doi/10.1016/j.neucom.2007.09.010info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:25:37Zoai:ri.conicet.gov.ar:11336/26188instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:25:37.929CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Differences in prefrontal and motor structures learning dynamics depend on task complexity: a neural network model
title Differences in prefrontal and motor structures learning dynamics depend on task complexity: a neural network model
spellingShingle Differences in prefrontal and motor structures learning dynamics depend on task complexity: a neural network model
Lew, Sergio Eduardo
Prefontal Cortex
Premotor Cortex
Basal Ganglia
Dopamine
title_short Differences in prefrontal and motor structures learning dynamics depend on task complexity: a neural network model
title_full Differences in prefrontal and motor structures learning dynamics depend on task complexity: a neural network model
title_fullStr Differences in prefrontal and motor structures learning dynamics depend on task complexity: a neural network model
title_full_unstemmed Differences in prefrontal and motor structures learning dynamics depend on task complexity: a neural network model
title_sort Differences in prefrontal and motor structures learning dynamics depend on task complexity: a neural network model
dc.creator.none.fl_str_mv Lew, Sergio Eduardo
Rey, Hernan Gonzalo
Gutnisky, D. A.
Zanutto, Bonifacio Silvano
author Lew, Sergio Eduardo
author_facet Lew, Sergio Eduardo
Rey, Hernan Gonzalo
Gutnisky, D. A.
Zanutto, Bonifacio Silvano
author_role author
author2 Rey, Hernan Gonzalo
Gutnisky, D. A.
Zanutto, Bonifacio Silvano
author2_role author
author
author
dc.subject.none.fl_str_mv Prefontal Cortex
Premotor Cortex
Basal Ganglia
Dopamine
topic Prefontal Cortex
Premotor Cortex
Basal Ganglia
Dopamine
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.6
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Neurons in the basal ganglia (BG) of monkeys learning a simple visual discrimination (VD) task show faster changes in activity than those in the prefrontal cortex (PFC). This motivated the hypothesis that changes in the BG activity can ''lead'' those in the PFC. Given that the PFC is a key player in the learning of complex tasks, we tested the former hypothesis by using a neural network model that learns simple and complex contingencies as VD and delayed matching to sample (DMTS) tasks. Even though the model accounted for the results in the VD task no such ''lead'' was observed in the DMTS task. We propose that when the task requires learning high-order contingencies, such as in the DMTS case, motor structures quickly select the subset of responses allowing the subject to obtain reward, but learning in the cortico-BG loop progresses in a concurrent way in order to maximize reward.
Fil: Lew, Sergio Eduardo. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina
Fil: Rey, Hernan Gonzalo. Universidad de Buenos Aires. Facultad de Ingenieria. Instituto de Ingeniería Biomédica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina
Fil: Gutnisky, D. A.. Texas A&M University; Estados Unidos
Fil: Zanutto, Bonifacio Silvano. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Universidad de Buenos Aires. Facultad de Ingenieria. Instituto de Ingeniería Biomédica; Argentina
description Neurons in the basal ganglia (BG) of monkeys learning a simple visual discrimination (VD) task show faster changes in activity than those in the prefrontal cortex (PFC). This motivated the hypothesis that changes in the BG activity can ''lead'' those in the PFC. Given that the PFC is a key player in the learning of complex tasks, we tested the former hypothesis by using a neural network model that learns simple and complex contingencies as VD and delayed matching to sample (DMTS) tasks. Even though the model accounted for the results in the VD task no such ''lead'' was observed in the DMTS task. We propose that when the task requires learning high-order contingencies, such as in the DMTS case, motor structures quickly select the subset of responses allowing the subject to obtain reward, but learning in the cortico-BG loop progresses in a concurrent way in order to maximize reward.
publishDate 2008
dc.date.none.fl_str_mv 2008-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/26188
Lew, Sergio Eduardo; Rey, Hernan Gonzalo; Gutnisky, D. A.; Zanutto, Bonifacio Silvano; Differences in prefrontal and motor structures learning dynamics depend on task complexity: a neural network model; Elsevier Science; Neurocomputing; 71; 13-15; 8-2008; 2782-2793
0925-2312
0925-2312
CONICET Digital
CONICET
url http://hdl.handle.net/11336/26188
identifier_str_mv Lew, Sergio Eduardo; Rey, Hernan Gonzalo; Gutnisky, D. A.; Zanutto, Bonifacio Silvano; Differences in prefrontal and motor structures learning dynamics depend on task complexity: a neural network model; Elsevier Science; Neurocomputing; 71; 13-15; 8-2008; 2782-2793
0925-2312
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0925231207003104
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.neucom.2007.09.010
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082693161287680
score 12.891075