Examples of risk tools for pests in Peanut (Arachis hypogaea) developed for five countries using Microsoft Excel

Autores
Jordan, David L.; Buol, Greg S.; Brandenburg, Rick L.; Reisig, Dominic; Nboyine, Jerry; Abudulai, Mumuni; Oteng Frimpong, Richard; Mochiah, Moses Brandford; Asibuo, James Y.; Arthur, Stephen; Akromah, Richard; Mhango, Wezi; Chintu, Justus; Morichetti, Sergio; Paredes, Juan Andres; Monguillot, Joaquín Humberto; Singh Jadon, Kuldeep; Shew, Barbara B.; Jasrotia, Poonam; Thirumalaisamy, P. P.; Harish, G.; Holajjer, Prasanna; Maheshala, Nataraja; MacDonald, Greg; Hoisington, David; Rhoads, James
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Suppressing pest populations below economically-damaging levels is an important element of sustainable peanut (Arachis hypogaea L.) production. Peanut farmers and their advisors often approach pest management with similar goals regardless of where they are located. Anticipating pest outbreaks using field history and monitoring pest populations are fundamental to protecting yield and financial investment. Microsoft Excel was used to develop individual risk indices for pests, a composite assessment of risk, and costs of risk mitigation practices for peanut in Argentina, Ghana, India, Malawi, and North Carolina (NC) in the United States (US). Depending on pests and resources available to manage pests, risk tools vary considerably, especially in the context of other crops that are grown in sequence with peanut, cultivars, and chemical inputs. In Argentina, India, and the US where more tools (e.g., mechanization and pesticides) are available, risk indices for a wide array of economically important pests were developed with the assumption that reducing risk to those pests likely will impact peanut yield in a positive manner. In Ghana and Malawi where fewer management tools are available, risks to yield and aflatoxin contamination are presented without risk indices for individual pests. The Microsoft Excel platform can be updated as new and additional information on effectiveness of management practices becomes apparent. Tools can be developed using this platform that are appropriate for their geography, environment, cropping systems, and pest complexes and management inputs that are available. In this article we present examples for the risk tool for each country.
Fil: Jordan, David L.. University of Georgia; Estados Unidos. North Carolina State University; Estados Unidos
Fil: Buol, Greg S.. North Carolina State University; Estados Unidos
Fil: Brandenburg, Rick L.. North Carolina State University; Estados Unidos
Fil: Reisig, Dominic. North Carolina State University; Estados Unidos
Fil: Nboyine, Jerry. Council for Scientific and Industrial Research Savanna Agricultural Research Institute; Ghana
Fil: Abudulai, Mumuni. Council for Scientific and Industrial Research Savanna Agricultural Research Institute; Ghana
Fil: Oteng Frimpong, Richard. Council for Scientific and Industrial Research Savanna Agricultural Research Institute; Ghana
Fil: Mochiah, Moses Brandford. Council for Scientific and Industrial Research Crops Research Institute; Ghana
Fil: Asibuo, James Y.. Council for Scientific and Industrial Research Crops Research Institute; Ghana
Fil: Arthur, Stephen. Council for Scientific and Industrial Research Crops Research Institute; Ghana
Fil: Akromah, Richard. Kwame Nkrumah University Of Science And Technology; Ghana
Fil: Mhango, Wezi. Lilongwe University Of Agriculture And Natural Resources; Malaui
Fil: Chintu, Justus. Chitedze Agricultural Research Service, Lilongwe; Malaui
Fil: Morichetti, Sergio. Aceitera General Deheza; Argentina
Fil: Paredes, Juan Andres. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Instituto de Patología Vegetal; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; Argentina
Fil: Monguillot, Joaquín Humberto. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Instituto de Patología Vegetal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Singh Jadon, Kuldeep. Central Arid Zone Research Institute, Jodhpur; India
Fil: Shew, Barbara B.. North Carolina State University; Estados Unidos
Fil: Jasrotia, Poonam. Indian Institute Of Wheat And Barley Research, Karnal; India
Fil: Thirumalaisamy, P. P.. India Council of Agricultural Research, National Bureau of Plant Genetic Resources; India
Fil: Harish, G.. Directorate Of Groundnut Research, Junagadh; India
Fil: Holajjer, Prasanna. National Bureau Of Plant Genetic Resources, New Delhi; India
Fil: Maheshala, Nataraja. Directorate Of Groundnut Research, Junagadh; India
Fil: MacDonald, Greg. University of Florida; Estados Unidos
Fil: Hoisington, David. University of Georgia; Estados Unidos
Fil: Rhoads, James. University of Georgia; Estados Unidos
Materia
AGRONOMY
CROP ROTATION
CULTIVAR RESISTANCE
DECISION TOOL
IPM-AGRICULTURE
PESTICIDE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/211924

id CONICETDig_52c94192ceedf5ac6c8ad9a13dd47c6d
oai_identifier_str oai:ri.conicet.gov.ar:11336/211924
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Examples of risk tools for pests in Peanut (Arachis hypogaea) developed for five countries using Microsoft ExcelJordan, David L.Buol, Greg S.Brandenburg, Rick L.Reisig, DominicNboyine, JerryAbudulai, MumuniOteng Frimpong, RichardMochiah, Moses BrandfordAsibuo, James Y.Arthur, StephenAkromah, RichardMhango, WeziChintu, JustusMorichetti, SergioParedes, Juan AndresMonguillot, Joaquín HumbertoSingh Jadon, KuldeepShew, Barbara B.Jasrotia, PoonamThirumalaisamy, P. P.Harish, G.Holajjer, PrasannaMaheshala, NatarajaMacDonald, GregHoisington, DavidRhoads, JamesAGRONOMYCROP ROTATIONCULTIVAR RESISTANCEDECISION TOOLIPM-AGRICULTUREPESTICIDEhttps://purl.org/becyt/ford/4.1https://purl.org/becyt/ford/4Suppressing pest populations below economically-damaging levels is an important element of sustainable peanut (Arachis hypogaea L.) production. Peanut farmers and their advisors often approach pest management with similar goals regardless of where they are located. Anticipating pest outbreaks using field history and monitoring pest populations are fundamental to protecting yield and financial investment. Microsoft Excel was used to develop individual risk indices for pests, a composite assessment of risk, and costs of risk mitigation practices for peanut in Argentina, Ghana, India, Malawi, and North Carolina (NC) in the United States (US). Depending on pests and resources available to manage pests, risk tools vary considerably, especially in the context of other crops that are grown in sequence with peanut, cultivars, and chemical inputs. In Argentina, India, and the US where more tools (e.g., mechanization and pesticides) are available, risk indices for a wide array of economically important pests were developed with the assumption that reducing risk to those pests likely will impact peanut yield in a positive manner. In Ghana and Malawi where fewer management tools are available, risks to yield and aflatoxin contamination are presented without risk indices for individual pests. The Microsoft Excel platform can be updated as new and additional information on effectiveness of management practices becomes apparent. Tools can be developed using this platform that are appropriate for their geography, environment, cropping systems, and pest complexes and management inputs that are available. In this article we present examples for the risk tool for each country.Fil: Jordan, David L.. University of Georgia; Estados Unidos. North Carolina State University; Estados UnidosFil: Buol, Greg S.. North Carolina State University; Estados UnidosFil: Brandenburg, Rick L.. North Carolina State University; Estados UnidosFil: Reisig, Dominic. North Carolina State University; Estados UnidosFil: Nboyine, Jerry. Council for Scientific and Industrial Research Savanna Agricultural Research Institute; GhanaFil: Abudulai, Mumuni. Council for Scientific and Industrial Research Savanna Agricultural Research Institute; GhanaFil: Oteng Frimpong, Richard. Council for Scientific and Industrial Research Savanna Agricultural Research Institute; GhanaFil: Mochiah, Moses Brandford. Council for Scientific and Industrial Research Crops Research Institute; GhanaFil: Asibuo, James Y.. Council for Scientific and Industrial Research Crops Research Institute; GhanaFil: Arthur, Stephen. Council for Scientific and Industrial Research Crops Research Institute; GhanaFil: Akromah, Richard. Kwame Nkrumah University Of Science And Technology; GhanaFil: Mhango, Wezi. Lilongwe University Of Agriculture And Natural Resources; MalauiFil: Chintu, Justus. Chitedze Agricultural Research Service, Lilongwe; MalauiFil: Morichetti, Sergio. Aceitera General Deheza; ArgentinaFil: Paredes, Juan Andres. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Instituto de Patología Vegetal; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; ArgentinaFil: Monguillot, Joaquín Humberto. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Instituto de Patología Vegetal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Singh Jadon, Kuldeep. Central Arid Zone Research Institute, Jodhpur; IndiaFil: Shew, Barbara B.. North Carolina State University; Estados UnidosFil: Jasrotia, Poonam. Indian Institute Of Wheat And Barley Research, Karnal; IndiaFil: Thirumalaisamy, P. P.. India Council of Agricultural Research, National Bureau of Plant Genetic Resources; IndiaFil: Harish, G.. Directorate Of Groundnut Research, Junagadh; IndiaFil: Holajjer, Prasanna. National Bureau Of Plant Genetic Resources, New Delhi; IndiaFil: Maheshala, Nataraja. Directorate Of Groundnut Research, Junagadh; IndiaFil: MacDonald, Greg. University of Florida; Estados UnidosFil: Hoisington, David. University of Georgia; Estados UnidosFil: Rhoads, James. University of Georgia; Estados UnidosOxford University Press2022-08-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/211924Jordan, David L.; Buol, Greg S.; Brandenburg, Rick L.; Reisig, Dominic; Nboyine, Jerry; et al.; Examples of risk tools for pests in Peanut (Arachis hypogaea) developed for five countries using Microsoft Excel; Oxford University Press; Database; 13; 1; 3-8-2022; 1-151758-0463CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1093/jipm/pmac017info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/jipm/article/13/1/20/6654612info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:56:33Zoai:ri.conicet.gov.ar:11336/211924instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:56:33.324CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Examples of risk tools for pests in Peanut (Arachis hypogaea) developed for five countries using Microsoft Excel
title Examples of risk tools for pests in Peanut (Arachis hypogaea) developed for five countries using Microsoft Excel
spellingShingle Examples of risk tools for pests in Peanut (Arachis hypogaea) developed for five countries using Microsoft Excel
Jordan, David L.
AGRONOMY
CROP ROTATION
CULTIVAR RESISTANCE
DECISION TOOL
IPM-AGRICULTURE
PESTICIDE
title_short Examples of risk tools for pests in Peanut (Arachis hypogaea) developed for five countries using Microsoft Excel
title_full Examples of risk tools for pests in Peanut (Arachis hypogaea) developed for five countries using Microsoft Excel
title_fullStr Examples of risk tools for pests in Peanut (Arachis hypogaea) developed for five countries using Microsoft Excel
title_full_unstemmed Examples of risk tools for pests in Peanut (Arachis hypogaea) developed for five countries using Microsoft Excel
title_sort Examples of risk tools for pests in Peanut (Arachis hypogaea) developed for five countries using Microsoft Excel
dc.creator.none.fl_str_mv Jordan, David L.
Buol, Greg S.
Brandenburg, Rick L.
Reisig, Dominic
Nboyine, Jerry
Abudulai, Mumuni
Oteng Frimpong, Richard
Mochiah, Moses Brandford
Asibuo, James Y.
Arthur, Stephen
Akromah, Richard
Mhango, Wezi
Chintu, Justus
Morichetti, Sergio
Paredes, Juan Andres
Monguillot, Joaquín Humberto
Singh Jadon, Kuldeep
Shew, Barbara B.
Jasrotia, Poonam
Thirumalaisamy, P. P.
Harish, G.
Holajjer, Prasanna
Maheshala, Nataraja
MacDonald, Greg
Hoisington, David
Rhoads, James
author Jordan, David L.
author_facet Jordan, David L.
Buol, Greg S.
Brandenburg, Rick L.
Reisig, Dominic
Nboyine, Jerry
Abudulai, Mumuni
Oteng Frimpong, Richard
Mochiah, Moses Brandford
Asibuo, James Y.
Arthur, Stephen
Akromah, Richard
Mhango, Wezi
Chintu, Justus
Morichetti, Sergio
Paredes, Juan Andres
Monguillot, Joaquín Humberto
Singh Jadon, Kuldeep
Shew, Barbara B.
Jasrotia, Poonam
Thirumalaisamy, P. P.
Harish, G.
Holajjer, Prasanna
Maheshala, Nataraja
MacDonald, Greg
Hoisington, David
Rhoads, James
author_role author
author2 Buol, Greg S.
Brandenburg, Rick L.
Reisig, Dominic
Nboyine, Jerry
Abudulai, Mumuni
Oteng Frimpong, Richard
Mochiah, Moses Brandford
Asibuo, James Y.
Arthur, Stephen
Akromah, Richard
Mhango, Wezi
Chintu, Justus
Morichetti, Sergio
Paredes, Juan Andres
Monguillot, Joaquín Humberto
Singh Jadon, Kuldeep
Shew, Barbara B.
Jasrotia, Poonam
Thirumalaisamy, P. P.
Harish, G.
Holajjer, Prasanna
Maheshala, Nataraja
MacDonald, Greg
Hoisington, David
Rhoads, James
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv AGRONOMY
CROP ROTATION
CULTIVAR RESISTANCE
DECISION TOOL
IPM-AGRICULTURE
PESTICIDE
topic AGRONOMY
CROP ROTATION
CULTIVAR RESISTANCE
DECISION TOOL
IPM-AGRICULTURE
PESTICIDE
purl_subject.fl_str_mv https://purl.org/becyt/ford/4.1
https://purl.org/becyt/ford/4
dc.description.none.fl_txt_mv Suppressing pest populations below economically-damaging levels is an important element of sustainable peanut (Arachis hypogaea L.) production. Peanut farmers and their advisors often approach pest management with similar goals regardless of where they are located. Anticipating pest outbreaks using field history and monitoring pest populations are fundamental to protecting yield and financial investment. Microsoft Excel was used to develop individual risk indices for pests, a composite assessment of risk, and costs of risk mitigation practices for peanut in Argentina, Ghana, India, Malawi, and North Carolina (NC) in the United States (US). Depending on pests and resources available to manage pests, risk tools vary considerably, especially in the context of other crops that are grown in sequence with peanut, cultivars, and chemical inputs. In Argentina, India, and the US where more tools (e.g., mechanization and pesticides) are available, risk indices for a wide array of economically important pests were developed with the assumption that reducing risk to those pests likely will impact peanut yield in a positive manner. In Ghana and Malawi where fewer management tools are available, risks to yield and aflatoxin contamination are presented without risk indices for individual pests. The Microsoft Excel platform can be updated as new and additional information on effectiveness of management practices becomes apparent. Tools can be developed using this platform that are appropriate for their geography, environment, cropping systems, and pest complexes and management inputs that are available. In this article we present examples for the risk tool for each country.
Fil: Jordan, David L.. University of Georgia; Estados Unidos. North Carolina State University; Estados Unidos
Fil: Buol, Greg S.. North Carolina State University; Estados Unidos
Fil: Brandenburg, Rick L.. North Carolina State University; Estados Unidos
Fil: Reisig, Dominic. North Carolina State University; Estados Unidos
Fil: Nboyine, Jerry. Council for Scientific and Industrial Research Savanna Agricultural Research Institute; Ghana
Fil: Abudulai, Mumuni. Council for Scientific and Industrial Research Savanna Agricultural Research Institute; Ghana
Fil: Oteng Frimpong, Richard. Council for Scientific and Industrial Research Savanna Agricultural Research Institute; Ghana
Fil: Mochiah, Moses Brandford. Council for Scientific and Industrial Research Crops Research Institute; Ghana
Fil: Asibuo, James Y.. Council for Scientific and Industrial Research Crops Research Institute; Ghana
Fil: Arthur, Stephen. Council for Scientific and Industrial Research Crops Research Institute; Ghana
Fil: Akromah, Richard. Kwame Nkrumah University Of Science And Technology; Ghana
Fil: Mhango, Wezi. Lilongwe University Of Agriculture And Natural Resources; Malaui
Fil: Chintu, Justus. Chitedze Agricultural Research Service, Lilongwe; Malaui
Fil: Morichetti, Sergio. Aceitera General Deheza; Argentina
Fil: Paredes, Juan Andres. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Instituto de Patología Vegetal; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; Argentina
Fil: Monguillot, Joaquín Humberto. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Instituto de Patología Vegetal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Singh Jadon, Kuldeep. Central Arid Zone Research Institute, Jodhpur; India
Fil: Shew, Barbara B.. North Carolina State University; Estados Unidos
Fil: Jasrotia, Poonam. Indian Institute Of Wheat And Barley Research, Karnal; India
Fil: Thirumalaisamy, P. P.. India Council of Agricultural Research, National Bureau of Plant Genetic Resources; India
Fil: Harish, G.. Directorate Of Groundnut Research, Junagadh; India
Fil: Holajjer, Prasanna. National Bureau Of Plant Genetic Resources, New Delhi; India
Fil: Maheshala, Nataraja. Directorate Of Groundnut Research, Junagadh; India
Fil: MacDonald, Greg. University of Florida; Estados Unidos
Fil: Hoisington, David. University of Georgia; Estados Unidos
Fil: Rhoads, James. University of Georgia; Estados Unidos
description Suppressing pest populations below economically-damaging levels is an important element of sustainable peanut (Arachis hypogaea L.) production. Peanut farmers and their advisors often approach pest management with similar goals regardless of where they are located. Anticipating pest outbreaks using field history and monitoring pest populations are fundamental to protecting yield and financial investment. Microsoft Excel was used to develop individual risk indices for pests, a composite assessment of risk, and costs of risk mitigation practices for peanut in Argentina, Ghana, India, Malawi, and North Carolina (NC) in the United States (US). Depending on pests and resources available to manage pests, risk tools vary considerably, especially in the context of other crops that are grown in sequence with peanut, cultivars, and chemical inputs. In Argentina, India, and the US where more tools (e.g., mechanization and pesticides) are available, risk indices for a wide array of economically important pests were developed with the assumption that reducing risk to those pests likely will impact peanut yield in a positive manner. In Ghana and Malawi where fewer management tools are available, risks to yield and aflatoxin contamination are presented without risk indices for individual pests. The Microsoft Excel platform can be updated as new and additional information on effectiveness of management practices becomes apparent. Tools can be developed using this platform that are appropriate for their geography, environment, cropping systems, and pest complexes and management inputs that are available. In this article we present examples for the risk tool for each country.
publishDate 2022
dc.date.none.fl_str_mv 2022-08-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/211924
Jordan, David L.; Buol, Greg S.; Brandenburg, Rick L.; Reisig, Dominic; Nboyine, Jerry; et al.; Examples of risk tools for pests in Peanut (Arachis hypogaea) developed for five countries using Microsoft Excel; Oxford University Press; Database; 13; 1; 3-8-2022; 1-15
1758-0463
CONICET Digital
CONICET
url http://hdl.handle.net/11336/211924
identifier_str_mv Jordan, David L.; Buol, Greg S.; Brandenburg, Rick L.; Reisig, Dominic; Nboyine, Jerry; et al.; Examples of risk tools for pests in Peanut (Arachis hypogaea) developed for five countries using Microsoft Excel; Oxford University Press; Database; 13; 1; 3-8-2022; 1-15
1758-0463
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1093/jipm/pmac017
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/jipm/article/13/1/20/6654612
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Oxford University Press
publisher.none.fl_str_mv Oxford University Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782273068728320
score 12.982451