Examples of risk tools for pests in Peanut (Arachis hypogaea) developed for five countries using Microsoft Excel
- Autores
- Jordan, David L.; Buol, Greg S.; Brandenburg, Rick L.; Reisig, Dominic; Nboyine, Jerry; Abudulai, Mumuni; Oteng Frimpong, Richard; Mochiah, Moses Brandford; Asibuo, James Y.; Arthur, Stephen; Akromah, Richard; Mhango, Wezi; Chintu, Justus; Morichetti, Sergio; Paredes, Juan Andres; Monguillot, Joaquín Humberto; Singh Jadon, Kuldeep; Shew, Barbara B.; Jasrotia, Poonam; Thirumalaisamy, P. P.; Harish, G.; Holajjer, Prasanna; Maheshala, Nataraja; MacDonald, Greg; Hoisington, David; Rhoads, James
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Suppressing pest populations below economically-damaging levels is an important element of sustainable peanut (Arachis hypogaea L.) production. Peanut farmers and their advisors often approach pest management with similar goals regardless of where they are located. Anticipating pest outbreaks using field history and monitoring pest populations are fundamental to protecting yield and financial investment. Microsoft Excel was used to develop individual risk indices for pests, a composite assessment of risk, and costs of risk mitigation practices for peanut in Argentina, Ghana, India, Malawi, and North Carolina (NC) in the United States (US). Depending on pests and resources available to manage pests, risk tools vary considerably, especially in the context of other crops that are grown in sequence with peanut, cultivars, and chemical inputs. In Argentina, India, and the US where more tools (e.g., mechanization and pesticides) are available, risk indices for a wide array of economically important pests were developed with the assumption that reducing risk to those pests likely will impact peanut yield in a positive manner. In Ghana and Malawi where fewer management tools are available, risks to yield and aflatoxin contamination are presented without risk indices for individual pests. The Microsoft Excel platform can be updated as new and additional information on effectiveness of management practices becomes apparent. Tools can be developed using this platform that are appropriate for their geography, environment, cropping systems, and pest complexes and management inputs that are available. In this article we present examples for the risk tool for each country.
Fil: Jordan, David L.. University of Georgia; Estados Unidos. North Carolina State University; Estados Unidos
Fil: Buol, Greg S.. North Carolina State University; Estados Unidos
Fil: Brandenburg, Rick L.. North Carolina State University; Estados Unidos
Fil: Reisig, Dominic. North Carolina State University; Estados Unidos
Fil: Nboyine, Jerry. Council for Scientific and Industrial Research Savanna Agricultural Research Institute; Ghana
Fil: Abudulai, Mumuni. Council for Scientific and Industrial Research Savanna Agricultural Research Institute; Ghana
Fil: Oteng Frimpong, Richard. Council for Scientific and Industrial Research Savanna Agricultural Research Institute; Ghana
Fil: Mochiah, Moses Brandford. Council for Scientific and Industrial Research Crops Research Institute; Ghana
Fil: Asibuo, James Y.. Council for Scientific and Industrial Research Crops Research Institute; Ghana
Fil: Arthur, Stephen. Council for Scientific and Industrial Research Crops Research Institute; Ghana
Fil: Akromah, Richard. Kwame Nkrumah University Of Science And Technology; Ghana
Fil: Mhango, Wezi. Lilongwe University Of Agriculture And Natural Resources; Malaui
Fil: Chintu, Justus. Chitedze Agricultural Research Service, Lilongwe; Malaui
Fil: Morichetti, Sergio. Aceitera General Deheza; Argentina
Fil: Paredes, Juan Andres. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Instituto de Patología Vegetal; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; Argentina
Fil: Monguillot, Joaquín Humberto. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Instituto de Patología Vegetal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Singh Jadon, Kuldeep. Central Arid Zone Research Institute, Jodhpur; India
Fil: Shew, Barbara B.. North Carolina State University; Estados Unidos
Fil: Jasrotia, Poonam. Indian Institute Of Wheat And Barley Research, Karnal; India
Fil: Thirumalaisamy, P. P.. India Council of Agricultural Research, National Bureau of Plant Genetic Resources; India
Fil: Harish, G.. Directorate Of Groundnut Research, Junagadh; India
Fil: Holajjer, Prasanna. National Bureau Of Plant Genetic Resources, New Delhi; India
Fil: Maheshala, Nataraja. Directorate Of Groundnut Research, Junagadh; India
Fil: MacDonald, Greg. University of Florida; Estados Unidos
Fil: Hoisington, David. University of Georgia; Estados Unidos
Fil: Rhoads, James. University of Georgia; Estados Unidos - Materia
-
AGRONOMY
CROP ROTATION
CULTIVAR RESISTANCE
DECISION TOOL
IPM-AGRICULTURE
PESTICIDE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/211924
Ver los metadatos del registro completo
id |
CONICETDig_52c94192ceedf5ac6c8ad9a13dd47c6d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/211924 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Examples of risk tools for pests in Peanut (Arachis hypogaea) developed for five countries using Microsoft ExcelJordan, David L.Buol, Greg S.Brandenburg, Rick L.Reisig, DominicNboyine, JerryAbudulai, MumuniOteng Frimpong, RichardMochiah, Moses BrandfordAsibuo, James Y.Arthur, StephenAkromah, RichardMhango, WeziChintu, JustusMorichetti, SergioParedes, Juan AndresMonguillot, Joaquín HumbertoSingh Jadon, KuldeepShew, Barbara B.Jasrotia, PoonamThirumalaisamy, P. P.Harish, G.Holajjer, PrasannaMaheshala, NatarajaMacDonald, GregHoisington, DavidRhoads, JamesAGRONOMYCROP ROTATIONCULTIVAR RESISTANCEDECISION TOOLIPM-AGRICULTUREPESTICIDEhttps://purl.org/becyt/ford/4.1https://purl.org/becyt/ford/4Suppressing pest populations below economically-damaging levels is an important element of sustainable peanut (Arachis hypogaea L.) production. Peanut farmers and their advisors often approach pest management with similar goals regardless of where they are located. Anticipating pest outbreaks using field history and monitoring pest populations are fundamental to protecting yield and financial investment. Microsoft Excel was used to develop individual risk indices for pests, a composite assessment of risk, and costs of risk mitigation practices for peanut in Argentina, Ghana, India, Malawi, and North Carolina (NC) in the United States (US). Depending on pests and resources available to manage pests, risk tools vary considerably, especially in the context of other crops that are grown in sequence with peanut, cultivars, and chemical inputs. In Argentina, India, and the US where more tools (e.g., mechanization and pesticides) are available, risk indices for a wide array of economically important pests were developed with the assumption that reducing risk to those pests likely will impact peanut yield in a positive manner. In Ghana and Malawi where fewer management tools are available, risks to yield and aflatoxin contamination are presented without risk indices for individual pests. The Microsoft Excel platform can be updated as new and additional information on effectiveness of management practices becomes apparent. Tools can be developed using this platform that are appropriate for their geography, environment, cropping systems, and pest complexes and management inputs that are available. In this article we present examples for the risk tool for each country.Fil: Jordan, David L.. University of Georgia; Estados Unidos. North Carolina State University; Estados UnidosFil: Buol, Greg S.. North Carolina State University; Estados UnidosFil: Brandenburg, Rick L.. North Carolina State University; Estados UnidosFil: Reisig, Dominic. North Carolina State University; Estados UnidosFil: Nboyine, Jerry. Council for Scientific and Industrial Research Savanna Agricultural Research Institute; GhanaFil: Abudulai, Mumuni. Council for Scientific and Industrial Research Savanna Agricultural Research Institute; GhanaFil: Oteng Frimpong, Richard. Council for Scientific and Industrial Research Savanna Agricultural Research Institute; GhanaFil: Mochiah, Moses Brandford. Council for Scientific and Industrial Research Crops Research Institute; GhanaFil: Asibuo, James Y.. Council for Scientific and Industrial Research Crops Research Institute; GhanaFil: Arthur, Stephen. Council for Scientific and Industrial Research Crops Research Institute; GhanaFil: Akromah, Richard. Kwame Nkrumah University Of Science And Technology; GhanaFil: Mhango, Wezi. Lilongwe University Of Agriculture And Natural Resources; MalauiFil: Chintu, Justus. Chitedze Agricultural Research Service, Lilongwe; MalauiFil: Morichetti, Sergio. Aceitera General Deheza; ArgentinaFil: Paredes, Juan Andres. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Instituto de Patología Vegetal; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; ArgentinaFil: Monguillot, Joaquín Humberto. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Instituto de Patología Vegetal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Singh Jadon, Kuldeep. Central Arid Zone Research Institute, Jodhpur; IndiaFil: Shew, Barbara B.. North Carolina State University; Estados UnidosFil: Jasrotia, Poonam. Indian Institute Of Wheat And Barley Research, Karnal; IndiaFil: Thirumalaisamy, P. P.. India Council of Agricultural Research, National Bureau of Plant Genetic Resources; IndiaFil: Harish, G.. Directorate Of Groundnut Research, Junagadh; IndiaFil: Holajjer, Prasanna. National Bureau Of Plant Genetic Resources, New Delhi; IndiaFil: Maheshala, Nataraja. Directorate Of Groundnut Research, Junagadh; IndiaFil: MacDonald, Greg. University of Florida; Estados UnidosFil: Hoisington, David. University of Georgia; Estados UnidosFil: Rhoads, James. University of Georgia; Estados UnidosOxford University Press2022-08-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/211924Jordan, David L.; Buol, Greg S.; Brandenburg, Rick L.; Reisig, Dominic; Nboyine, Jerry; et al.; Examples of risk tools for pests in Peanut (Arachis hypogaea) developed for five countries using Microsoft Excel; Oxford University Press; Database; 13; 1; 3-8-2022; 1-151758-0463CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1093/jipm/pmac017info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/jipm/article/13/1/20/6654612info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:56:33Zoai:ri.conicet.gov.ar:11336/211924instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:56:33.324CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Examples of risk tools for pests in Peanut (Arachis hypogaea) developed for five countries using Microsoft Excel |
title |
Examples of risk tools for pests in Peanut (Arachis hypogaea) developed for five countries using Microsoft Excel |
spellingShingle |
Examples of risk tools for pests in Peanut (Arachis hypogaea) developed for five countries using Microsoft Excel Jordan, David L. AGRONOMY CROP ROTATION CULTIVAR RESISTANCE DECISION TOOL IPM-AGRICULTURE PESTICIDE |
title_short |
Examples of risk tools for pests in Peanut (Arachis hypogaea) developed for five countries using Microsoft Excel |
title_full |
Examples of risk tools for pests in Peanut (Arachis hypogaea) developed for five countries using Microsoft Excel |
title_fullStr |
Examples of risk tools for pests in Peanut (Arachis hypogaea) developed for five countries using Microsoft Excel |
title_full_unstemmed |
Examples of risk tools for pests in Peanut (Arachis hypogaea) developed for five countries using Microsoft Excel |
title_sort |
Examples of risk tools for pests in Peanut (Arachis hypogaea) developed for five countries using Microsoft Excel |
dc.creator.none.fl_str_mv |
Jordan, David L. Buol, Greg S. Brandenburg, Rick L. Reisig, Dominic Nboyine, Jerry Abudulai, Mumuni Oteng Frimpong, Richard Mochiah, Moses Brandford Asibuo, James Y. Arthur, Stephen Akromah, Richard Mhango, Wezi Chintu, Justus Morichetti, Sergio Paredes, Juan Andres Monguillot, Joaquín Humberto Singh Jadon, Kuldeep Shew, Barbara B. Jasrotia, Poonam Thirumalaisamy, P. P. Harish, G. Holajjer, Prasanna Maheshala, Nataraja MacDonald, Greg Hoisington, David Rhoads, James |
author |
Jordan, David L. |
author_facet |
Jordan, David L. Buol, Greg S. Brandenburg, Rick L. Reisig, Dominic Nboyine, Jerry Abudulai, Mumuni Oteng Frimpong, Richard Mochiah, Moses Brandford Asibuo, James Y. Arthur, Stephen Akromah, Richard Mhango, Wezi Chintu, Justus Morichetti, Sergio Paredes, Juan Andres Monguillot, Joaquín Humberto Singh Jadon, Kuldeep Shew, Barbara B. Jasrotia, Poonam Thirumalaisamy, P. P. Harish, G. Holajjer, Prasanna Maheshala, Nataraja MacDonald, Greg Hoisington, David Rhoads, James |
author_role |
author |
author2 |
Buol, Greg S. Brandenburg, Rick L. Reisig, Dominic Nboyine, Jerry Abudulai, Mumuni Oteng Frimpong, Richard Mochiah, Moses Brandford Asibuo, James Y. Arthur, Stephen Akromah, Richard Mhango, Wezi Chintu, Justus Morichetti, Sergio Paredes, Juan Andres Monguillot, Joaquín Humberto Singh Jadon, Kuldeep Shew, Barbara B. Jasrotia, Poonam Thirumalaisamy, P. P. Harish, G. Holajjer, Prasanna Maheshala, Nataraja MacDonald, Greg Hoisington, David Rhoads, James |
author2_role |
author author author author author author author author author author author author author author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
AGRONOMY CROP ROTATION CULTIVAR RESISTANCE DECISION TOOL IPM-AGRICULTURE PESTICIDE |
topic |
AGRONOMY CROP ROTATION CULTIVAR RESISTANCE DECISION TOOL IPM-AGRICULTURE PESTICIDE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.1 https://purl.org/becyt/ford/4 |
dc.description.none.fl_txt_mv |
Suppressing pest populations below economically-damaging levels is an important element of sustainable peanut (Arachis hypogaea L.) production. Peanut farmers and their advisors often approach pest management with similar goals regardless of where they are located. Anticipating pest outbreaks using field history and monitoring pest populations are fundamental to protecting yield and financial investment. Microsoft Excel was used to develop individual risk indices for pests, a composite assessment of risk, and costs of risk mitigation practices for peanut in Argentina, Ghana, India, Malawi, and North Carolina (NC) in the United States (US). Depending on pests and resources available to manage pests, risk tools vary considerably, especially in the context of other crops that are grown in sequence with peanut, cultivars, and chemical inputs. In Argentina, India, and the US where more tools (e.g., mechanization and pesticides) are available, risk indices for a wide array of economically important pests were developed with the assumption that reducing risk to those pests likely will impact peanut yield in a positive manner. In Ghana and Malawi where fewer management tools are available, risks to yield and aflatoxin contamination are presented without risk indices for individual pests. The Microsoft Excel platform can be updated as new and additional information on effectiveness of management practices becomes apparent. Tools can be developed using this platform that are appropriate for their geography, environment, cropping systems, and pest complexes and management inputs that are available. In this article we present examples for the risk tool for each country. Fil: Jordan, David L.. University of Georgia; Estados Unidos. North Carolina State University; Estados Unidos Fil: Buol, Greg S.. North Carolina State University; Estados Unidos Fil: Brandenburg, Rick L.. North Carolina State University; Estados Unidos Fil: Reisig, Dominic. North Carolina State University; Estados Unidos Fil: Nboyine, Jerry. Council for Scientific and Industrial Research Savanna Agricultural Research Institute; Ghana Fil: Abudulai, Mumuni. Council for Scientific and Industrial Research Savanna Agricultural Research Institute; Ghana Fil: Oteng Frimpong, Richard. Council for Scientific and Industrial Research Savanna Agricultural Research Institute; Ghana Fil: Mochiah, Moses Brandford. Council for Scientific and Industrial Research Crops Research Institute; Ghana Fil: Asibuo, James Y.. Council for Scientific and Industrial Research Crops Research Institute; Ghana Fil: Arthur, Stephen. Council for Scientific and Industrial Research Crops Research Institute; Ghana Fil: Akromah, Richard. Kwame Nkrumah University Of Science And Technology; Ghana Fil: Mhango, Wezi. Lilongwe University Of Agriculture And Natural Resources; Malaui Fil: Chintu, Justus. Chitedze Agricultural Research Service, Lilongwe; Malaui Fil: Morichetti, Sergio. Aceitera General Deheza; Argentina Fil: Paredes, Juan Andres. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Instituto de Patología Vegetal; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; Argentina Fil: Monguillot, Joaquín Humberto. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Instituto de Patología Vegetal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Singh Jadon, Kuldeep. Central Arid Zone Research Institute, Jodhpur; India Fil: Shew, Barbara B.. North Carolina State University; Estados Unidos Fil: Jasrotia, Poonam. Indian Institute Of Wheat And Barley Research, Karnal; India Fil: Thirumalaisamy, P. P.. India Council of Agricultural Research, National Bureau of Plant Genetic Resources; India Fil: Harish, G.. Directorate Of Groundnut Research, Junagadh; India Fil: Holajjer, Prasanna. National Bureau Of Plant Genetic Resources, New Delhi; India Fil: Maheshala, Nataraja. Directorate Of Groundnut Research, Junagadh; India Fil: MacDonald, Greg. University of Florida; Estados Unidos Fil: Hoisington, David. University of Georgia; Estados Unidos Fil: Rhoads, James. University of Georgia; Estados Unidos |
description |
Suppressing pest populations below economically-damaging levels is an important element of sustainable peanut (Arachis hypogaea L.) production. Peanut farmers and their advisors often approach pest management with similar goals regardless of where they are located. Anticipating pest outbreaks using field history and monitoring pest populations are fundamental to protecting yield and financial investment. Microsoft Excel was used to develop individual risk indices for pests, a composite assessment of risk, and costs of risk mitigation practices for peanut in Argentina, Ghana, India, Malawi, and North Carolina (NC) in the United States (US). Depending on pests and resources available to manage pests, risk tools vary considerably, especially in the context of other crops that are grown in sequence with peanut, cultivars, and chemical inputs. In Argentina, India, and the US where more tools (e.g., mechanization and pesticides) are available, risk indices for a wide array of economically important pests were developed with the assumption that reducing risk to those pests likely will impact peanut yield in a positive manner. In Ghana and Malawi where fewer management tools are available, risks to yield and aflatoxin contamination are presented without risk indices for individual pests. The Microsoft Excel platform can be updated as new and additional information on effectiveness of management practices becomes apparent. Tools can be developed using this platform that are appropriate for their geography, environment, cropping systems, and pest complexes and management inputs that are available. In this article we present examples for the risk tool for each country. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-08-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/211924 Jordan, David L.; Buol, Greg S.; Brandenburg, Rick L.; Reisig, Dominic; Nboyine, Jerry; et al.; Examples of risk tools for pests in Peanut (Arachis hypogaea) developed for five countries using Microsoft Excel; Oxford University Press; Database; 13; 1; 3-8-2022; 1-15 1758-0463 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/211924 |
identifier_str_mv |
Jordan, David L.; Buol, Greg S.; Brandenburg, Rick L.; Reisig, Dominic; Nboyine, Jerry; et al.; Examples of risk tools for pests in Peanut (Arachis hypogaea) developed for five countries using Microsoft Excel; Oxford University Press; Database; 13; 1; 3-8-2022; 1-15 1758-0463 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1093/jipm/pmac017 info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/jipm/article/13/1/20/6654612 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Oxford University Press |
publisher.none.fl_str_mv |
Oxford University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846782273068728320 |
score |
12.982451 |