Uncovering the Secrets of the Concept of Place in Cognitive Maps Aided by Artificial Intelligence
- Autores
- Fernandez Leon, Jose Alberto; Acosta, Gerardo Gabriel
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Uncovering how mental representations acquire, recall, and decode spatial information about relative locations and environmental attributes (cognitive map) involves different challenges. This work is geared towards theoretical discussions on the controversial issue of cognitive scalability for understanding cognitive map emergence from place and grid cells at the intersection between neuroscience and artificial intelligence. In our view, different place maps emerge from parallel and hierarchical neural structures supporting a global cognitive map. The mechanisms sustaining these maps do not only process sensory input but also assign the input to a location. Contentious issues are presented around these concepts and provide concrete suggestions for moving the field forward. We recommend approaching the described challenges guided by AI-based theoretical aspects of encoded place instead of based chiefly on technological aspects to study the brain. SIGNIFICANCE: A formal difference exists between the concepts of spatial representations between experimental neuroscientists and computer scientists and engineers in the so-called neural-based autonomous navigation field. From a neuroscience perspective, we consider the position of an organism’s body to be entirely determined by translational spatial information (e.g., visited places and velocities). An organism predicts where it is at a specific time using continuous or discrete spatial functions embedded into navigation systems. From these functions, we infer that the concept of place has emerged. However, from an engineering standpoint, we represent structured scaffolds of behavioral processes to determine movements from the organism’s current position to some other spatial locations. These scaffolds are certainly affected by the system’s designer. Therefore, the coding of place, in this case, is predetermined. The contrast between emergent cognitive map through inputs versus predefined spatial recognition between two fields creates an inconsistency. Clarifying this tension can inform us on how the brain encodes abstract knowledge to represent spatial positions, which hints at a universal theory of cognition.
Fil: Fernandez Leon, Jose Alberto. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; Argentina
Fil: Acosta, Gerardo Gabriel. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; Argentina - Materia
-
COGNITION
COGNITIVE MAPS
GRID CELLS
NEURO-INSPIRATION
PLACE CELLS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/213714
Ver los metadatos del registro completo
id |
CONICETDig_524657f8ee2d2ee45db52e933849a785 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/213714 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Uncovering the Secrets of the Concept of Place in Cognitive Maps Aided by Artificial IntelligenceFernandez Leon, Jose AlbertoAcosta, Gerardo GabrielCOGNITIONCOGNITIVE MAPSGRID CELLSNEURO-INSPIRATIONPLACE CELLShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Uncovering how mental representations acquire, recall, and decode spatial information about relative locations and environmental attributes (cognitive map) involves different challenges. This work is geared towards theoretical discussions on the controversial issue of cognitive scalability for understanding cognitive map emergence from place and grid cells at the intersection between neuroscience and artificial intelligence. In our view, different place maps emerge from parallel and hierarchical neural structures supporting a global cognitive map. The mechanisms sustaining these maps do not only process sensory input but also assign the input to a location. Contentious issues are presented around these concepts and provide concrete suggestions for moving the field forward. We recommend approaching the described challenges guided by AI-based theoretical aspects of encoded place instead of based chiefly on technological aspects to study the brain. SIGNIFICANCE: A formal difference exists between the concepts of spatial representations between experimental neuroscientists and computer scientists and engineers in the so-called neural-based autonomous navigation field. From a neuroscience perspective, we consider the position of an organism’s body to be entirely determined by translational spatial information (e.g., visited places and velocities). An organism predicts where it is at a specific time using continuous or discrete spatial functions embedded into navigation systems. From these functions, we infer that the concept of place has emerged. However, from an engineering standpoint, we represent structured scaffolds of behavioral processes to determine movements from the organism’s current position to some other spatial locations. These scaffolds are certainly affected by the system’s designer. Therefore, the coding of place, in this case, is predetermined. The contrast between emergent cognitive map through inputs versus predefined spatial recognition between two fields creates an inconsistency. Clarifying this tension can inform us on how the brain encodes abstract knowledge to represent spatial positions, which hints at a universal theory of cognition.Fil: Fernandez Leon, Jose Alberto. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; ArgentinaFil: Acosta, Gerardo Gabriel. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; ArgentinaSpringer2022-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/213714Fernandez Leon, Jose Alberto; Acosta, Gerardo Gabriel; Uncovering the Secrets of the Concept of Place in Cognitive Maps Aided by Artificial Intelligence; Springer; Cognitive Computation; 10-2022; 1-111866-99561866-9964CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s12559-022-10064-winfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:46:07Zoai:ri.conicet.gov.ar:11336/213714instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:46:07.453CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Uncovering the Secrets of the Concept of Place in Cognitive Maps Aided by Artificial Intelligence |
title |
Uncovering the Secrets of the Concept of Place in Cognitive Maps Aided by Artificial Intelligence |
spellingShingle |
Uncovering the Secrets of the Concept of Place in Cognitive Maps Aided by Artificial Intelligence Fernandez Leon, Jose Alberto COGNITION COGNITIVE MAPS GRID CELLS NEURO-INSPIRATION PLACE CELLS |
title_short |
Uncovering the Secrets of the Concept of Place in Cognitive Maps Aided by Artificial Intelligence |
title_full |
Uncovering the Secrets of the Concept of Place in Cognitive Maps Aided by Artificial Intelligence |
title_fullStr |
Uncovering the Secrets of the Concept of Place in Cognitive Maps Aided by Artificial Intelligence |
title_full_unstemmed |
Uncovering the Secrets of the Concept of Place in Cognitive Maps Aided by Artificial Intelligence |
title_sort |
Uncovering the Secrets of the Concept of Place in Cognitive Maps Aided by Artificial Intelligence |
dc.creator.none.fl_str_mv |
Fernandez Leon, Jose Alberto Acosta, Gerardo Gabriel |
author |
Fernandez Leon, Jose Alberto |
author_facet |
Fernandez Leon, Jose Alberto Acosta, Gerardo Gabriel |
author_role |
author |
author2 |
Acosta, Gerardo Gabriel |
author2_role |
author |
dc.subject.none.fl_str_mv |
COGNITION COGNITIVE MAPS GRID CELLS NEURO-INSPIRATION PLACE CELLS |
topic |
COGNITION COGNITIVE MAPS GRID CELLS NEURO-INSPIRATION PLACE CELLS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Uncovering how mental representations acquire, recall, and decode spatial information about relative locations and environmental attributes (cognitive map) involves different challenges. This work is geared towards theoretical discussions on the controversial issue of cognitive scalability for understanding cognitive map emergence from place and grid cells at the intersection between neuroscience and artificial intelligence. In our view, different place maps emerge from parallel and hierarchical neural structures supporting a global cognitive map. The mechanisms sustaining these maps do not only process sensory input but also assign the input to a location. Contentious issues are presented around these concepts and provide concrete suggestions for moving the field forward. We recommend approaching the described challenges guided by AI-based theoretical aspects of encoded place instead of based chiefly on technological aspects to study the brain. SIGNIFICANCE: A formal difference exists between the concepts of spatial representations between experimental neuroscientists and computer scientists and engineers in the so-called neural-based autonomous navigation field. From a neuroscience perspective, we consider the position of an organism’s body to be entirely determined by translational spatial information (e.g., visited places and velocities). An organism predicts where it is at a specific time using continuous or discrete spatial functions embedded into navigation systems. From these functions, we infer that the concept of place has emerged. However, from an engineering standpoint, we represent structured scaffolds of behavioral processes to determine movements from the organism’s current position to some other spatial locations. These scaffolds are certainly affected by the system’s designer. Therefore, the coding of place, in this case, is predetermined. The contrast between emergent cognitive map through inputs versus predefined spatial recognition between two fields creates an inconsistency. Clarifying this tension can inform us on how the brain encodes abstract knowledge to represent spatial positions, which hints at a universal theory of cognition. Fil: Fernandez Leon, Jose Alberto. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; Argentina Fil: Acosta, Gerardo Gabriel. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; Argentina |
description |
Uncovering how mental representations acquire, recall, and decode spatial information about relative locations and environmental attributes (cognitive map) involves different challenges. This work is geared towards theoretical discussions on the controversial issue of cognitive scalability for understanding cognitive map emergence from place and grid cells at the intersection between neuroscience and artificial intelligence. In our view, different place maps emerge from parallel and hierarchical neural structures supporting a global cognitive map. The mechanisms sustaining these maps do not only process sensory input but also assign the input to a location. Contentious issues are presented around these concepts and provide concrete suggestions for moving the field forward. We recommend approaching the described challenges guided by AI-based theoretical aspects of encoded place instead of based chiefly on technological aspects to study the brain. SIGNIFICANCE: A formal difference exists between the concepts of spatial representations between experimental neuroscientists and computer scientists and engineers in the so-called neural-based autonomous navigation field. From a neuroscience perspective, we consider the position of an organism’s body to be entirely determined by translational spatial information (e.g., visited places and velocities). An organism predicts where it is at a specific time using continuous or discrete spatial functions embedded into navigation systems. From these functions, we infer that the concept of place has emerged. However, from an engineering standpoint, we represent structured scaffolds of behavioral processes to determine movements from the organism’s current position to some other spatial locations. These scaffolds are certainly affected by the system’s designer. Therefore, the coding of place, in this case, is predetermined. The contrast between emergent cognitive map through inputs versus predefined spatial recognition between two fields creates an inconsistency. Clarifying this tension can inform us on how the brain encodes abstract knowledge to represent spatial positions, which hints at a universal theory of cognition. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/213714 Fernandez Leon, Jose Alberto; Acosta, Gerardo Gabriel; Uncovering the Secrets of the Concept of Place in Cognitive Maps Aided by Artificial Intelligence; Springer; Cognitive Computation; 10-2022; 1-11 1866-9956 1866-9964 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/213714 |
identifier_str_mv |
Fernandez Leon, Jose Alberto; Acosta, Gerardo Gabriel; Uncovering the Secrets of the Concept of Place in Cognitive Maps Aided by Artificial Intelligence; Springer; Cognitive Computation; 10-2022; 1-11 1866-9956 1866-9964 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s12559-022-10064-w |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614502051479552 |
score |
13.070432 |