Perfect edge domination: hard and solvable cases
- Autores
- Lin, Min Chih; Lozin, Vadim; Moyano, Verónica Andrea; Szwarcfiter, Jayme L.
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let G be an undirected graph. An edge of Gdominates itself and all edges adjacent to it. A subset E′ of edges of G is an edge dominating set of G, if every edge of the graph is dominated by some edge of E′. We say that E′ is a perfect edge dominating set of G, if every edge not in E′ is dominated by exactly one edge of E′. The perfect edge dominating problem is to determine a least cardinality perfect edge dominating set of G. For this problem, we describe two NP-completeness proofs, for the classes of claw-free graphs of degree at most 3, and for bounded degree graphs, of maximum degree at most d≥ 3 and large girth. In contrast, we prove that the problem admits an O(n) time solution, for cubic claw-free graphs. In addition, we prove a complexity dichotomy theorem for the perfect edge domination problem, based on the results described in the paper. Finally, we describe a linear time algorithm for finding a minimum weight perfect edge dominating set of a P5-free graph. The algorithm is robust, in the sense that, given an arbitrary graph G, either it computes a minimum weight perfect edge dominating set of G, or it exhibits an induced subgraph of G, isomorphic to a P5.
Fil: Lin, Min Chih. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina
Fil: Lozin, Vadim. University of Warwick; Reino Unido
Fil: Moyano, Verónica Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina
Fil: Szwarcfiter, Jayme L.. Universidade Federal do Rio de Janeiro; Brasil. Instituto Nacional de Metrologia, Qualidade e Tecnologia; Brasil - Materia
-
CLAW-FREE GRAPHS
COMPLEXITY DICHOTOMY
CUBIC GRAPHS
NP-COMPLETENESS
PERFECT EDGE DOMINATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/60143
Ver los metadatos del registro completo
id |
CONICETDig_520ef01d4237269c603fad0cd2d74b84 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/60143 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Perfect edge domination: hard and solvable casesLin, Min ChihLozin, VadimMoyano, Verónica AndreaSzwarcfiter, Jayme L.CLAW-FREE GRAPHSCOMPLEXITY DICHOTOMYCUBIC GRAPHSNP-COMPLETENESSPERFECT EDGE DOMINATIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let G be an undirected graph. An edge of Gdominates itself and all edges adjacent to it. A subset E′ of edges of G is an edge dominating set of G, if every edge of the graph is dominated by some edge of E′. We say that E′ is a perfect edge dominating set of G, if every edge not in E′ is dominated by exactly one edge of E′. The perfect edge dominating problem is to determine a least cardinality perfect edge dominating set of G. For this problem, we describe two NP-completeness proofs, for the classes of claw-free graphs of degree at most 3, and for bounded degree graphs, of maximum degree at most d≥ 3 and large girth. In contrast, we prove that the problem admits an O(n) time solution, for cubic claw-free graphs. In addition, we prove a complexity dichotomy theorem for the perfect edge domination problem, based on the results described in the paper. Finally, we describe a linear time algorithm for finding a minimum weight perfect edge dominating set of a P5-free graph. The algorithm is robust, in the sense that, given an arbitrary graph G, either it computes a minimum weight perfect edge dominating set of G, or it exhibits an induced subgraph of G, isomorphic to a P5.Fil: Lin, Min Chih. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; ArgentinaFil: Lozin, Vadim. University of Warwick; Reino UnidoFil: Moyano, Verónica Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; ArgentinaFil: Szwarcfiter, Jayme L.. Universidade Federal do Rio de Janeiro; Brasil. Instituto Nacional de Metrologia, Qualidade e Tecnologia; BrasilSpringer2018-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/60143Lin, Min Chih; Lozin, Vadim; Moyano, Verónica Andrea; Szwarcfiter, Jayme L.; Perfect edge domination: hard and solvable cases; Springer; Annals Of Operations Research; 264; 1-2; 5-2018; 287-3050254-53301572-9338CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10479-017-2664-3info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10479-017-2664-3info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1705.08379info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:46:13Zoai:ri.conicet.gov.ar:11336/60143instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:46:13.424CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Perfect edge domination: hard and solvable cases |
title |
Perfect edge domination: hard and solvable cases |
spellingShingle |
Perfect edge domination: hard and solvable cases Lin, Min Chih CLAW-FREE GRAPHS COMPLEXITY DICHOTOMY CUBIC GRAPHS NP-COMPLETENESS PERFECT EDGE DOMINATION |
title_short |
Perfect edge domination: hard and solvable cases |
title_full |
Perfect edge domination: hard and solvable cases |
title_fullStr |
Perfect edge domination: hard and solvable cases |
title_full_unstemmed |
Perfect edge domination: hard and solvable cases |
title_sort |
Perfect edge domination: hard and solvable cases |
dc.creator.none.fl_str_mv |
Lin, Min Chih Lozin, Vadim Moyano, Verónica Andrea Szwarcfiter, Jayme L. |
author |
Lin, Min Chih |
author_facet |
Lin, Min Chih Lozin, Vadim Moyano, Verónica Andrea Szwarcfiter, Jayme L. |
author_role |
author |
author2 |
Lozin, Vadim Moyano, Verónica Andrea Szwarcfiter, Jayme L. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
CLAW-FREE GRAPHS COMPLEXITY DICHOTOMY CUBIC GRAPHS NP-COMPLETENESS PERFECT EDGE DOMINATION |
topic |
CLAW-FREE GRAPHS COMPLEXITY DICHOTOMY CUBIC GRAPHS NP-COMPLETENESS PERFECT EDGE DOMINATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let G be an undirected graph. An edge of Gdominates itself and all edges adjacent to it. A subset E′ of edges of G is an edge dominating set of G, if every edge of the graph is dominated by some edge of E′. We say that E′ is a perfect edge dominating set of G, if every edge not in E′ is dominated by exactly one edge of E′. The perfect edge dominating problem is to determine a least cardinality perfect edge dominating set of G. For this problem, we describe two NP-completeness proofs, for the classes of claw-free graphs of degree at most 3, and for bounded degree graphs, of maximum degree at most d≥ 3 and large girth. In contrast, we prove that the problem admits an O(n) time solution, for cubic claw-free graphs. In addition, we prove a complexity dichotomy theorem for the perfect edge domination problem, based on the results described in the paper. Finally, we describe a linear time algorithm for finding a minimum weight perfect edge dominating set of a P5-free graph. The algorithm is robust, in the sense that, given an arbitrary graph G, either it computes a minimum weight perfect edge dominating set of G, or it exhibits an induced subgraph of G, isomorphic to a P5. Fil: Lin, Min Chih. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina Fil: Lozin, Vadim. University of Warwick; Reino Unido Fil: Moyano, Verónica Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina Fil: Szwarcfiter, Jayme L.. Universidade Federal do Rio de Janeiro; Brasil. Instituto Nacional de Metrologia, Qualidade e Tecnologia; Brasil |
description |
Let G be an undirected graph. An edge of Gdominates itself and all edges adjacent to it. A subset E′ of edges of G is an edge dominating set of G, if every edge of the graph is dominated by some edge of E′. We say that E′ is a perfect edge dominating set of G, if every edge not in E′ is dominated by exactly one edge of E′. The perfect edge dominating problem is to determine a least cardinality perfect edge dominating set of G. For this problem, we describe two NP-completeness proofs, for the classes of claw-free graphs of degree at most 3, and for bounded degree graphs, of maximum degree at most d≥ 3 and large girth. In contrast, we prove that the problem admits an O(n) time solution, for cubic claw-free graphs. In addition, we prove a complexity dichotomy theorem for the perfect edge domination problem, based on the results described in the paper. Finally, we describe a linear time algorithm for finding a minimum weight perfect edge dominating set of a P5-free graph. The algorithm is robust, in the sense that, given an arbitrary graph G, either it computes a minimum weight perfect edge dominating set of G, or it exhibits an induced subgraph of G, isomorphic to a P5. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/60143 Lin, Min Chih; Lozin, Vadim; Moyano, Verónica Andrea; Szwarcfiter, Jayme L.; Perfect edge domination: hard and solvable cases; Springer; Annals Of Operations Research; 264; 1-2; 5-2018; 287-305 0254-5330 1572-9338 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/60143 |
identifier_str_mv |
Lin, Min Chih; Lozin, Vadim; Moyano, Verónica Andrea; Szwarcfiter, Jayme L.; Perfect edge domination: hard and solvable cases; Springer; Annals Of Operations Research; 264; 1-2; 5-2018; 287-305 0254-5330 1572-9338 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10479-017-2664-3 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10479-017-2664-3 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1705.08379 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614503279362048 |
score |
13.070432 |