Assessing the evolution in remotely sensed vegetation index using image processing techniques

Autores
Revollo Sarmiento, Natalia Veronica; Revollo Sarmiento, Gisela Noelia; Huamantinco Cisneros, María Andrea; Delrieux, Claudio Augusto; Piccolo, Maria Cintia
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Vegetation has a substantial role as an indicator of anthropic effects, specifically in cases where urban planning is required. This is especially the case in the management of coastal cities, where vegetation exerts several effects that heighten the quality of life (alleviation of unpleasant weather conditions, mitigation of erosion, aesthetics, among others). For this reason, there is an increased interest in the development of automated tools for studying the temporal and spatial evolution of the vegetation cover in wide urban areas, with an adequate spatial and temporal resolution. We present an automated image processing workflow for computing the variation of vegetation cover using any publicly available satellite imagery (ASTER, SPOT, LANDSAT, MODIS, among others) and a set of image processing algorithms specifically developed. The automatic processing methodology was developed to evaluate the spatial and temporal evolution of vegetation cover, including the Normalized Difference Vegetation Index (NDVI), the vegetation cover percentage and the vegetation variation. A prior urban area digitalization is required. The methodology was applied in Monte Hermoso city, Argentina. The vegetation cover per city block was computed and three transects over the city were outlined to evaluate the changes in NDVI values. This allows the computation of several information products, like NDVI profiles, vegetation variation assessment, and classification of city areas regarding vegetation. The information is available in GIS-readable formats, making it useful as support for urban planning decisions.
A vegetação tem um papel importante como indicador de efeitos antrópicos, especificamente nos casos em que o planejamento urbano é necessário. Este é especialmente o caso na gestão de cidades costeiras, onde a vegetação exerce diversos efeitos que elevam a qualidade de vida (alívio de condições climáticas desagradáveis, mitigação da erosão, estética, entre outras). Por essa razão, há um interesse crescente no desenvolvimento de ferramentas automatizadas para o estudo da evolução temporal e espacial da cobertura vegetal em grandes áreas urbanas, com adequada resolução espacial e temporal. Apresentamos um fluxo de trabalho automatizado de processamento de imagens para calcular a variação da cobertura vegetal usando qualquer imagem de satélite publicamente disponível (ASTER, SPOT, LANDSAT, MODIS, entre outros) e um conjunto de algoritmos de processamento de imagem desenvolvidos especificamente. A metodologia de processamento automático foi desenvolvida para avaliar a evolução espacial e temporal da cobertura vegetal, incluindo o Índice de Vegetação da Diferença Normalizada (NDVI), o percentual de cobertura vegetal e a variação da vegetação. Uma digitalização prévia da área urbana foi necessária. A metodologia foi aplicada na cidade de Monte Hermoso, na Argentina. A cobertura vegetal por quarteirão foi computada e três transectos sobre a cidade foram delineados para avaliar as mudanças nos valores de NDVI. Isso permite o cálculo de vários produtos de informação, como perfis de NDVI, avaliação da variação da vegetação e classificação das áreas da cidade em relação à vegetação. A informação está disponível em formatos legíveis pelo GIS, tornando-a útil como suporte para decisões de planejamento urbano.
Fil: Revollo Sarmiento, Natalia Veronica. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina
Fil: Revollo Sarmiento, Gisela Noelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina
Fil: Huamantinco Cisneros, María Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Geografía y Turismo; Argentina
Fil: Delrieux, Claudio Augusto. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina
Fil: Piccolo, Maria Cintia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Argentino de Oceanografía. Universidad Nacional del Sur. Instituto Argentino de Oceanografía; Argentina. Universidad Nacional del Sur. Departamento de Geografía y Turismo; Argentina
Materia
COASTAL MANAGEMENT
IMAGE PROCESSING TECHNIQUES
NDVI INDEX
VEGETATION COVER
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/99278

id CONICETDig_51d94c3cb7457a30a02aff13a025011f
oai_identifier_str oai:ri.conicet.gov.ar:11336/99278
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Assessing the evolution in remotely sensed vegetation index using image processing techniquesAvaliação da evolução do índice de vegetação de teledetecção usando de técnicas de processamento de imagensRevollo Sarmiento, Natalia VeronicaRevollo Sarmiento, Gisela NoeliaHuamantinco Cisneros, María AndreaDelrieux, Claudio AugustoPiccolo, Maria CintiaCOASTAL MANAGEMENTIMAGE PROCESSING TECHNIQUESNDVI INDEXVEGETATION COVERhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Vegetation has a substantial role as an indicator of anthropic effects, specifically in cases where urban planning is required. This is especially the case in the management of coastal cities, where vegetation exerts several effects that heighten the quality of life (alleviation of unpleasant weather conditions, mitigation of erosion, aesthetics, among others). For this reason, there is an increased interest in the development of automated tools for studying the temporal and spatial evolution of the vegetation cover in wide urban areas, with an adequate spatial and temporal resolution. We present an automated image processing workflow for computing the variation of vegetation cover using any publicly available satellite imagery (ASTER, SPOT, LANDSAT, MODIS, among others) and a set of image processing algorithms specifically developed. The automatic processing methodology was developed to evaluate the spatial and temporal evolution of vegetation cover, including the Normalized Difference Vegetation Index (NDVI), the vegetation cover percentage and the vegetation variation. A prior urban area digitalization is required. The methodology was applied in Monte Hermoso city, Argentina. The vegetation cover per city block was computed and three transects over the city were outlined to evaluate the changes in NDVI values. This allows the computation of several information products, like NDVI profiles, vegetation variation assessment, and classification of city areas regarding vegetation. The information is available in GIS-readable formats, making it useful as support for urban planning decisions.A vegetação tem um papel importante como indicador de efeitos antrópicos, especificamente nos casos em que o planejamento urbano é necessário. Este é especialmente o caso na gestão de cidades costeiras, onde a vegetação exerce diversos efeitos que elevam a qualidade de vida (alívio de condições climáticas desagradáveis, mitigação da erosão, estética, entre outras). Por essa razão, há um interesse crescente no desenvolvimento de ferramentas automatizadas para o estudo da evolução temporal e espacial da cobertura vegetal em grandes áreas urbanas, com adequada resolução espacial e temporal. Apresentamos um fluxo de trabalho automatizado de processamento de imagens para calcular a variação da cobertura vegetal usando qualquer imagem de satélite publicamente disponível (ASTER, SPOT, LANDSAT, MODIS, entre outros) e um conjunto de algoritmos de processamento de imagem desenvolvidos especificamente. A metodologia de processamento automático foi desenvolvida para avaliar a evolução espacial e temporal da cobertura vegetal, incluindo o Índice de Vegetação da Diferença Normalizada (NDVI), o percentual de cobertura vegetal e a variação da vegetação. Uma digitalização prévia da área urbana foi necessária. A metodologia foi aplicada na cidade de Monte Hermoso, na Argentina. A cobertura vegetal por quarteirão foi computada e três transectos sobre a cidade foram delineados para avaliar as mudanças nos valores de NDVI. Isso permite o cálculo de vários produtos de informação, como perfis de NDVI, avaliação da variação da vegetação e classificação das áreas da cidade em relação à vegetação. A informação está disponível em formatos legíveis pelo GIS, tornando-a útil como suporte para decisões de planejamento urbano.Fil: Revollo Sarmiento, Natalia Veronica. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; ArgentinaFil: Revollo Sarmiento, Gisela Noelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; ArgentinaFil: Huamantinco Cisneros, María Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Geografía y Turismo; ArgentinaFil: Delrieux, Claudio Augusto. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; ArgentinaFil: Piccolo, Maria Cintia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Argentino de Oceanografía. Universidad Nacional del Sur. Instituto Argentino de Oceanografía; Argentina. Universidad Nacional del Sur. Departamento de Geografía y Turismo; ArgentinaUniversidad Federal de Rio de Janeiro. Instituto de Geociências2019-05-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/99278Revollo Sarmiento, Natalia Veronica; Revollo Sarmiento, Gisela Noelia; Huamantinco Cisneros, María Andrea; Delrieux, Claudio Augusto; Piccolo, Maria Cintia; Assessing the evolution in remotely sensed vegetation index using image processing techniques; Universidad Federal de Rio de Janeiro. Instituto de Geociências; Anuário do Instituto de Geociências; 42; 3; 10-5-2019; 27-410101-97591982-3908CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.11137/2019_3_27_41info:eu-repo/semantics/altIdentifier/url/http://www.anuario.igeo.ufrj.br/2019_3/anuario_2019_42_3_sumario.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:11:36Zoai:ri.conicet.gov.ar:11336/99278instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:11:36.792CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Assessing the evolution in remotely sensed vegetation index using image processing techniques
Avaliação da evolução do índice de vegetação de teledetecção usando de técnicas de processamento de imagens
title Assessing the evolution in remotely sensed vegetation index using image processing techniques
spellingShingle Assessing the evolution in remotely sensed vegetation index using image processing techniques
Revollo Sarmiento, Natalia Veronica
COASTAL MANAGEMENT
IMAGE PROCESSING TECHNIQUES
NDVI INDEX
VEGETATION COVER
title_short Assessing the evolution in remotely sensed vegetation index using image processing techniques
title_full Assessing the evolution in remotely sensed vegetation index using image processing techniques
title_fullStr Assessing the evolution in remotely sensed vegetation index using image processing techniques
title_full_unstemmed Assessing the evolution in remotely sensed vegetation index using image processing techniques
title_sort Assessing the evolution in remotely sensed vegetation index using image processing techniques
dc.creator.none.fl_str_mv Revollo Sarmiento, Natalia Veronica
Revollo Sarmiento, Gisela Noelia
Huamantinco Cisneros, María Andrea
Delrieux, Claudio Augusto
Piccolo, Maria Cintia
author Revollo Sarmiento, Natalia Veronica
author_facet Revollo Sarmiento, Natalia Veronica
Revollo Sarmiento, Gisela Noelia
Huamantinco Cisneros, María Andrea
Delrieux, Claudio Augusto
Piccolo, Maria Cintia
author_role author
author2 Revollo Sarmiento, Gisela Noelia
Huamantinco Cisneros, María Andrea
Delrieux, Claudio Augusto
Piccolo, Maria Cintia
author2_role author
author
author
author
dc.subject.none.fl_str_mv COASTAL MANAGEMENT
IMAGE PROCESSING TECHNIQUES
NDVI INDEX
VEGETATION COVER
topic COASTAL MANAGEMENT
IMAGE PROCESSING TECHNIQUES
NDVI INDEX
VEGETATION COVER
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Vegetation has a substantial role as an indicator of anthropic effects, specifically in cases where urban planning is required. This is especially the case in the management of coastal cities, where vegetation exerts several effects that heighten the quality of life (alleviation of unpleasant weather conditions, mitigation of erosion, aesthetics, among others). For this reason, there is an increased interest in the development of automated tools for studying the temporal and spatial evolution of the vegetation cover in wide urban areas, with an adequate spatial and temporal resolution. We present an automated image processing workflow for computing the variation of vegetation cover using any publicly available satellite imagery (ASTER, SPOT, LANDSAT, MODIS, among others) and a set of image processing algorithms specifically developed. The automatic processing methodology was developed to evaluate the spatial and temporal evolution of vegetation cover, including the Normalized Difference Vegetation Index (NDVI), the vegetation cover percentage and the vegetation variation. A prior urban area digitalization is required. The methodology was applied in Monte Hermoso city, Argentina. The vegetation cover per city block was computed and three transects over the city were outlined to evaluate the changes in NDVI values. This allows the computation of several information products, like NDVI profiles, vegetation variation assessment, and classification of city areas regarding vegetation. The information is available in GIS-readable formats, making it useful as support for urban planning decisions.
A vegetação tem um papel importante como indicador de efeitos antrópicos, especificamente nos casos em que o planejamento urbano é necessário. Este é especialmente o caso na gestão de cidades costeiras, onde a vegetação exerce diversos efeitos que elevam a qualidade de vida (alívio de condições climáticas desagradáveis, mitigação da erosão, estética, entre outras). Por essa razão, há um interesse crescente no desenvolvimento de ferramentas automatizadas para o estudo da evolução temporal e espacial da cobertura vegetal em grandes áreas urbanas, com adequada resolução espacial e temporal. Apresentamos um fluxo de trabalho automatizado de processamento de imagens para calcular a variação da cobertura vegetal usando qualquer imagem de satélite publicamente disponível (ASTER, SPOT, LANDSAT, MODIS, entre outros) e um conjunto de algoritmos de processamento de imagem desenvolvidos especificamente. A metodologia de processamento automático foi desenvolvida para avaliar a evolução espacial e temporal da cobertura vegetal, incluindo o Índice de Vegetação da Diferença Normalizada (NDVI), o percentual de cobertura vegetal e a variação da vegetação. Uma digitalização prévia da área urbana foi necessária. A metodologia foi aplicada na cidade de Monte Hermoso, na Argentina. A cobertura vegetal por quarteirão foi computada e três transectos sobre a cidade foram delineados para avaliar as mudanças nos valores de NDVI. Isso permite o cálculo de vários produtos de informação, como perfis de NDVI, avaliação da variação da vegetação e classificação das áreas da cidade em relação à vegetação. A informação está disponível em formatos legíveis pelo GIS, tornando-a útil como suporte para decisões de planejamento urbano.
Fil: Revollo Sarmiento, Natalia Veronica. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina
Fil: Revollo Sarmiento, Gisela Noelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina
Fil: Huamantinco Cisneros, María Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Geografía y Turismo; Argentina
Fil: Delrieux, Claudio Augusto. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina
Fil: Piccolo, Maria Cintia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Argentino de Oceanografía. Universidad Nacional del Sur. Instituto Argentino de Oceanografía; Argentina. Universidad Nacional del Sur. Departamento de Geografía y Turismo; Argentina
description Vegetation has a substantial role as an indicator of anthropic effects, specifically in cases where urban planning is required. This is especially the case in the management of coastal cities, where vegetation exerts several effects that heighten the quality of life (alleviation of unpleasant weather conditions, mitigation of erosion, aesthetics, among others). For this reason, there is an increased interest in the development of automated tools for studying the temporal and spatial evolution of the vegetation cover in wide urban areas, with an adequate spatial and temporal resolution. We present an automated image processing workflow for computing the variation of vegetation cover using any publicly available satellite imagery (ASTER, SPOT, LANDSAT, MODIS, among others) and a set of image processing algorithms specifically developed. The automatic processing methodology was developed to evaluate the spatial and temporal evolution of vegetation cover, including the Normalized Difference Vegetation Index (NDVI), the vegetation cover percentage and the vegetation variation. A prior urban area digitalization is required. The methodology was applied in Monte Hermoso city, Argentina. The vegetation cover per city block was computed and three transects over the city were outlined to evaluate the changes in NDVI values. This allows the computation of several information products, like NDVI profiles, vegetation variation assessment, and classification of city areas regarding vegetation. The information is available in GIS-readable formats, making it useful as support for urban planning decisions.
publishDate 2019
dc.date.none.fl_str_mv 2019-05-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/99278
Revollo Sarmiento, Natalia Veronica; Revollo Sarmiento, Gisela Noelia; Huamantinco Cisneros, María Andrea; Delrieux, Claudio Augusto; Piccolo, Maria Cintia; Assessing the evolution in remotely sensed vegetation index using image processing techniques; Universidad Federal de Rio de Janeiro. Instituto de Geociências; Anuário do Instituto de Geociências; 42; 3; 10-5-2019; 27-41
0101-9759
1982-3908
CONICET Digital
CONICET
url http://hdl.handle.net/11336/99278
identifier_str_mv Revollo Sarmiento, Natalia Veronica; Revollo Sarmiento, Gisela Noelia; Huamantinco Cisneros, María Andrea; Delrieux, Claudio Augusto; Piccolo, Maria Cintia; Assessing the evolution in remotely sensed vegetation index using image processing techniques; Universidad Federal de Rio de Janeiro. Instituto de Geociências; Anuário do Instituto de Geociências; 42; 3; 10-5-2019; 27-41
0101-9759
1982-3908
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.11137/2019_3_27_41
info:eu-repo/semantics/altIdentifier/url/http://www.anuario.igeo.ufrj.br/2019_3/anuario_2019_42_3_sumario.html
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidad Federal de Rio de Janeiro. Instituto de Geociências
publisher.none.fl_str_mv Universidad Federal de Rio de Janeiro. Instituto de Geociências
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614016584908800
score 13.070432