Strictly systolic angled complexes and hyperbolicity of one-relator groups
- Autores
- Blufstein, Martín Axel; Minian, Elias Gabriel
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We introduce the notion of strictly systolic angled complexes. They generalize Januszkiewicz and Świątkowski’s 7 –systolic simplicial complexes and also their metric counterparts, which appear as natural analogues to Huang and Osajda’s metrically systolic simplicial complexes in the context of negative curvature. We prove that strictly systolic angled complexes and the groups that act on them geometrically, together with their finitely presented subgroups, are hyperbolic. We use these complexes to study the geometry of one-relator groups without torsion, and prove hyperbolicity of such groups under a metric small cancellation hypothesis, weaker than C ' ( 1 6 ) and C ' ( 1 4 ) − T ( 4 ) .
Fil: Blufstein, Martín Axel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Minian, Elias Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
HYPERBOLICITY
SYSTOLICITY
ANGLES
ONERELATORS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/214851
Ver los metadatos del registro completo
id |
CONICETDig_514792f899cf073ef896adb1f0778b1b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/214851 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Strictly systolic angled complexes and hyperbolicity of one-relator groupsBlufstein, Martín AxelMinian, Elias GabrielHYPERBOLICITYSYSTOLICITYANGLESONERELATORShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We introduce the notion of strictly systolic angled complexes. They generalize Januszkiewicz and Świątkowski’s 7 –systolic simplicial complexes and also their metric counterparts, which appear as natural analogues to Huang and Osajda’s metrically systolic simplicial complexes in the context of negative curvature. We prove that strictly systolic angled complexes and the groups that act on them geometrically, together with their finitely presented subgroups, are hyperbolic. We use these complexes to study the geometry of one-relator groups without torsion, and prove hyperbolicity of such groups under a metric small cancellation hypothesis, weaker than C ' ( 1 6 ) and C ' ( 1 4 ) − T ( 4 ) .Fil: Blufstein, Martín Axel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Minian, Elias Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaMathematical Sciences Publishers2022-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/214851Blufstein, Martín Axel; Minian, Elias Gabriel; Strictly systolic angled complexes and hyperbolicity of one-relator groups; Mathematical Sciences Publishers; Algebraic and Geometric Topology; 22; 3; 8-2022; 1159-11751472-27471472-2739CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1907.06738info:eu-repo/semantics/altIdentifier/url/https://msp.org/agt/2022/22-3/agt-v22-n3-p05-s.pdfinfo:eu-repo/semantics/altIdentifier/doi/10.2140/agt.2022.22.1159info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:00:36Zoai:ri.conicet.gov.ar:11336/214851instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:00:36.482CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Strictly systolic angled complexes and hyperbolicity of one-relator groups |
title |
Strictly systolic angled complexes and hyperbolicity of one-relator groups |
spellingShingle |
Strictly systolic angled complexes and hyperbolicity of one-relator groups Blufstein, Martín Axel HYPERBOLICITY SYSTOLICITY ANGLES ONERELATORS |
title_short |
Strictly systolic angled complexes and hyperbolicity of one-relator groups |
title_full |
Strictly systolic angled complexes and hyperbolicity of one-relator groups |
title_fullStr |
Strictly systolic angled complexes and hyperbolicity of one-relator groups |
title_full_unstemmed |
Strictly systolic angled complexes and hyperbolicity of one-relator groups |
title_sort |
Strictly systolic angled complexes and hyperbolicity of one-relator groups |
dc.creator.none.fl_str_mv |
Blufstein, Martín Axel Minian, Elias Gabriel |
author |
Blufstein, Martín Axel |
author_facet |
Blufstein, Martín Axel Minian, Elias Gabriel |
author_role |
author |
author2 |
Minian, Elias Gabriel |
author2_role |
author |
dc.subject.none.fl_str_mv |
HYPERBOLICITY SYSTOLICITY ANGLES ONERELATORS |
topic |
HYPERBOLICITY SYSTOLICITY ANGLES ONERELATORS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We introduce the notion of strictly systolic angled complexes. They generalize Januszkiewicz and Świątkowski’s 7 –systolic simplicial complexes and also their metric counterparts, which appear as natural analogues to Huang and Osajda’s metrically systolic simplicial complexes in the context of negative curvature. We prove that strictly systolic angled complexes and the groups that act on them geometrically, together with their finitely presented subgroups, are hyperbolic. We use these complexes to study the geometry of one-relator groups without torsion, and prove hyperbolicity of such groups under a metric small cancellation hypothesis, weaker than C ' ( 1 6 ) and C ' ( 1 4 ) − T ( 4 ) . Fil: Blufstein, Martín Axel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Minian, Elias Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
We introduce the notion of strictly systolic angled complexes. They generalize Januszkiewicz and Świątkowski’s 7 –systolic simplicial complexes and also their metric counterparts, which appear as natural analogues to Huang and Osajda’s metrically systolic simplicial complexes in the context of negative curvature. We prove that strictly systolic angled complexes and the groups that act on them geometrically, together with their finitely presented subgroups, are hyperbolic. We use these complexes to study the geometry of one-relator groups without torsion, and prove hyperbolicity of such groups under a metric small cancellation hypothesis, weaker than C ' ( 1 6 ) and C ' ( 1 4 ) − T ( 4 ) . |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/214851 Blufstein, Martín Axel; Minian, Elias Gabriel; Strictly systolic angled complexes and hyperbolicity of one-relator groups; Mathematical Sciences Publishers; Algebraic and Geometric Topology; 22; 3; 8-2022; 1159-1175 1472-2747 1472-2739 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/214851 |
identifier_str_mv |
Blufstein, Martín Axel; Minian, Elias Gabriel; Strictly systolic angled complexes and hyperbolicity of one-relator groups; Mathematical Sciences Publishers; Algebraic and Geometric Topology; 22; 3; 8-2022; 1159-1175 1472-2747 1472-2739 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1907.06738 info:eu-repo/semantics/altIdentifier/url/https://msp.org/agt/2022/22-3/agt-v22-n3-p05-s.pdf info:eu-repo/semantics/altIdentifier/doi/10.2140/agt.2022.22.1159 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Mathematical Sciences Publishers |
publisher.none.fl_str_mv |
Mathematical Sciences Publishers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083145243295744 |
score |
13.22299 |