Strictly systolic angled complexes and hyperbolicity of one-relator groups

Autores
Blufstein, Martín Axel; Minian, Elias Gabriel
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We introduce the notion of strictly systolic angled complexes. They generalize Januszkiewicz and Świątkowski’s 7 –systolic simplicial complexes and also their metric counterparts, which appear as natural analogues to Huang and Osajda’s metrically systolic simplicial complexes in the context of negative curvature. We prove that strictly systolic angled complexes and the groups that act on them geometrically, together with their finitely presented subgroups, are hyperbolic. We use these complexes to study the geometry of one-relator groups without torsion, and prove hyperbolicity of such groups under a metric small cancellation hypothesis, weaker than C ' ( 1 6 ) and C ' ( 1 4 ) − T ( 4 ) .
Fil: Blufstein, Martín Axel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Minian, Elias Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Materia
HYPERBOLICITY
SYSTOLICITY
ANGLES
ONERELATORS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/214851

id CONICETDig_514792f899cf073ef896adb1f0778b1b
oai_identifier_str oai:ri.conicet.gov.ar:11336/214851
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Strictly systolic angled complexes and hyperbolicity of one-relator groupsBlufstein, Martín AxelMinian, Elias GabrielHYPERBOLICITYSYSTOLICITYANGLESONERELATORShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We introduce the notion of strictly systolic angled complexes. They generalize Januszkiewicz and Świątkowski’s 7 –systolic simplicial complexes and also their metric counterparts, which appear as natural analogues to Huang and Osajda’s metrically systolic simplicial complexes in the context of negative curvature. We prove that strictly systolic angled complexes and the groups that act on them geometrically, together with their finitely presented subgroups, are hyperbolic. We use these complexes to study the geometry of one-relator groups without torsion, and prove hyperbolicity of such groups under a metric small cancellation hypothesis, weaker than C ' ( 1 6 ) and C ' ( 1 4 ) − T ( 4 ) .Fil: Blufstein, Martín Axel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Minian, Elias Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaMathematical Sciences Publishers2022-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/214851Blufstein, Martín Axel; Minian, Elias Gabriel; Strictly systolic angled complexes and hyperbolicity of one-relator groups; Mathematical Sciences Publishers; Algebraic and Geometric Topology; 22; 3; 8-2022; 1159-11751472-27471472-2739CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1907.06738info:eu-repo/semantics/altIdentifier/url/https://msp.org/agt/2022/22-3/agt-v22-n3-p05-s.pdfinfo:eu-repo/semantics/altIdentifier/doi/10.2140/agt.2022.22.1159info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:00:36Zoai:ri.conicet.gov.ar:11336/214851instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:00:36.482CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Strictly systolic angled complexes and hyperbolicity of one-relator groups
title Strictly systolic angled complexes and hyperbolicity of one-relator groups
spellingShingle Strictly systolic angled complexes and hyperbolicity of one-relator groups
Blufstein, Martín Axel
HYPERBOLICITY
SYSTOLICITY
ANGLES
ONERELATORS
title_short Strictly systolic angled complexes and hyperbolicity of one-relator groups
title_full Strictly systolic angled complexes and hyperbolicity of one-relator groups
title_fullStr Strictly systolic angled complexes and hyperbolicity of one-relator groups
title_full_unstemmed Strictly systolic angled complexes and hyperbolicity of one-relator groups
title_sort Strictly systolic angled complexes and hyperbolicity of one-relator groups
dc.creator.none.fl_str_mv Blufstein, Martín Axel
Minian, Elias Gabriel
author Blufstein, Martín Axel
author_facet Blufstein, Martín Axel
Minian, Elias Gabriel
author_role author
author2 Minian, Elias Gabriel
author2_role author
dc.subject.none.fl_str_mv HYPERBOLICITY
SYSTOLICITY
ANGLES
ONERELATORS
topic HYPERBOLICITY
SYSTOLICITY
ANGLES
ONERELATORS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We introduce the notion of strictly systolic angled complexes. They generalize Januszkiewicz and Świątkowski’s 7 –systolic simplicial complexes and also their metric counterparts, which appear as natural analogues to Huang and Osajda’s metrically systolic simplicial complexes in the context of negative curvature. We prove that strictly systolic angled complexes and the groups that act on them geometrically, together with their finitely presented subgroups, are hyperbolic. We use these complexes to study the geometry of one-relator groups without torsion, and prove hyperbolicity of such groups under a metric small cancellation hypothesis, weaker than C ' ( 1 6 ) and C ' ( 1 4 ) − T ( 4 ) .
Fil: Blufstein, Martín Axel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Minian, Elias Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
description We introduce the notion of strictly systolic angled complexes. They generalize Januszkiewicz and Świątkowski’s 7 –systolic simplicial complexes and also their metric counterparts, which appear as natural analogues to Huang and Osajda’s metrically systolic simplicial complexes in the context of negative curvature. We prove that strictly systolic angled complexes and the groups that act on them geometrically, together with their finitely presented subgroups, are hyperbolic. We use these complexes to study the geometry of one-relator groups without torsion, and prove hyperbolicity of such groups under a metric small cancellation hypothesis, weaker than C ' ( 1 6 ) and C ' ( 1 4 ) − T ( 4 ) .
publishDate 2022
dc.date.none.fl_str_mv 2022-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/214851
Blufstein, Martín Axel; Minian, Elias Gabriel; Strictly systolic angled complexes and hyperbolicity of one-relator groups; Mathematical Sciences Publishers; Algebraic and Geometric Topology; 22; 3; 8-2022; 1159-1175
1472-2747
1472-2739
CONICET Digital
CONICET
url http://hdl.handle.net/11336/214851
identifier_str_mv Blufstein, Martín Axel; Minian, Elias Gabriel; Strictly systolic angled complexes and hyperbolicity of one-relator groups; Mathematical Sciences Publishers; Algebraic and Geometric Topology; 22; 3; 8-2022; 1159-1175
1472-2747
1472-2739
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1907.06738
info:eu-repo/semantics/altIdentifier/url/https://msp.org/agt/2022/22-3/agt-v22-n3-p05-s.pdf
info:eu-repo/semantics/altIdentifier/doi/10.2140/agt.2022.22.1159
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Mathematical Sciences Publishers
publisher.none.fl_str_mv Mathematical Sciences Publishers
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083145243295744
score 13.22299