The quasi-periodicity of the Minority Game revisited
- Autores
- Acosta Rodriguez, Gabriel; Caridi, Délida Inés; Guala, Sebastián; Marenco, Javier
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We analyze two well-known related aspects regarding the sequence of minority sides from the Minority Game (MG) in its symmetric phase: period-two dynamics and quasi-periodic behavior. We also study the sequence of minority sides in a general way within a graph-theoretical framework. In order to analyze the outcome dynamics of the MG, it is useful to define the MG prior, namely an MG with a new choosing rule of the strategy to play, which takes into account both prior preferences and game information. In this way, each time an agent is undecided because two of her best strategies predict different choices while being equally successful so far, she selects her a priori favorite strategy to play, instead of performing a random tie-break as in the MG. This new choosing rule leaves the generic behavior of the model unaffected and simplifies the game analysis. Furthermore, interesting properties arise which are only partially present in the MG, like the quasi-periodic behavior of the sequence of minority sides, which turns out to be periodic for the MG prior.
Fil: Acosta Rodriguez, Gabriel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Caridi, Délida Inés. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Guala, Sebastián. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
Fil: Marenco, Javier. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina - Materia
-
Minority game
Quasi-periodic behavior
Choosing rule - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/14865
Ver los metadatos del registro completo
id |
CONICETDig_513d4a79e78413e1e5950c8ae6956ca8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/14865 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The quasi-periodicity of the Minority Game revisitedAcosta Rodriguez, GabrielCaridi, Délida InésGuala, SebastiánMarenco, JavierMinority gameQuasi-periodic behaviorChoosing rulehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We analyze two well-known related aspects regarding the sequence of minority sides from the Minority Game (MG) in its symmetric phase: period-two dynamics and quasi-periodic behavior. We also study the sequence of minority sides in a general way within a graph-theoretical framework. In order to analyze the outcome dynamics of the MG, it is useful to define the MG prior, namely an MG with a new choosing rule of the strategy to play, which takes into account both prior preferences and game information. In this way, each time an agent is undecided because two of her best strategies predict different choices while being equally successful so far, she selects her a priori favorite strategy to play, instead of performing a random tie-break as in the MG. This new choosing rule leaves the generic behavior of the model unaffected and simplifies the game analysis. Furthermore, interesting properties arise which are only partially present in the MG, like the quasi-periodic behavior of the sequence of minority sides, which turns out to be periodic for the MG prior.Fil: Acosta Rodriguez, Gabriel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Caridi, Délida Inés. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Guala, Sebastián. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaFil: Marenco, Javier. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaElsevier2013-06-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/14865Acosta Rodriguez, Gabriel; Caridi, Délida Inés; Guala, Sebastián; Marenco, Javier; The quasi-periodicity of the Minority Game revisited; Elsevier; Physica A: Statistical Mechanics And Its Applications; 392; 19; 04-6-2013; 4450-44650378-4371enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2013.05.038info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0378437113004792info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:38:28Zoai:ri.conicet.gov.ar:11336/14865instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:38:29.097CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The quasi-periodicity of the Minority Game revisited |
title |
The quasi-periodicity of the Minority Game revisited |
spellingShingle |
The quasi-periodicity of the Minority Game revisited Acosta Rodriguez, Gabriel Minority game Quasi-periodic behavior Choosing rule |
title_short |
The quasi-periodicity of the Minority Game revisited |
title_full |
The quasi-periodicity of the Minority Game revisited |
title_fullStr |
The quasi-periodicity of the Minority Game revisited |
title_full_unstemmed |
The quasi-periodicity of the Minority Game revisited |
title_sort |
The quasi-periodicity of the Minority Game revisited |
dc.creator.none.fl_str_mv |
Acosta Rodriguez, Gabriel Caridi, Délida Inés Guala, Sebastián Marenco, Javier |
author |
Acosta Rodriguez, Gabriel |
author_facet |
Acosta Rodriguez, Gabriel Caridi, Délida Inés Guala, Sebastián Marenco, Javier |
author_role |
author |
author2 |
Caridi, Délida Inés Guala, Sebastián Marenco, Javier |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Minority game Quasi-periodic behavior Choosing rule |
topic |
Minority game Quasi-periodic behavior Choosing rule |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We analyze two well-known related aspects regarding the sequence of minority sides from the Minority Game (MG) in its symmetric phase: period-two dynamics and quasi-periodic behavior. We also study the sequence of minority sides in a general way within a graph-theoretical framework. In order to analyze the outcome dynamics of the MG, it is useful to define the MG prior, namely an MG with a new choosing rule of the strategy to play, which takes into account both prior preferences and game information. In this way, each time an agent is undecided because two of her best strategies predict different choices while being equally successful so far, she selects her a priori favorite strategy to play, instead of performing a random tie-break as in the MG. This new choosing rule leaves the generic behavior of the model unaffected and simplifies the game analysis. Furthermore, interesting properties arise which are only partially present in the MG, like the quasi-periodic behavior of the sequence of minority sides, which turns out to be periodic for the MG prior. Fil: Acosta Rodriguez, Gabriel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Caridi, Délida Inés. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Guala, Sebastián. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina Fil: Marenco, Javier. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina |
description |
We analyze two well-known related aspects regarding the sequence of minority sides from the Minority Game (MG) in its symmetric phase: period-two dynamics and quasi-periodic behavior. We also study the sequence of minority sides in a general way within a graph-theoretical framework. In order to analyze the outcome dynamics of the MG, it is useful to define the MG prior, namely an MG with a new choosing rule of the strategy to play, which takes into account both prior preferences and game information. In this way, each time an agent is undecided because two of her best strategies predict different choices while being equally successful so far, she selects her a priori favorite strategy to play, instead of performing a random tie-break as in the MG. This new choosing rule leaves the generic behavior of the model unaffected and simplifies the game analysis. Furthermore, interesting properties arise which are only partially present in the MG, like the quasi-periodic behavior of the sequence of minority sides, which turns out to be periodic for the MG prior. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-06-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/14865 Acosta Rodriguez, Gabriel; Caridi, Délida Inés; Guala, Sebastián; Marenco, Javier; The quasi-periodicity of the Minority Game revisited; Elsevier; Physica A: Statistical Mechanics And Its Applications; 392; 19; 04-6-2013; 4450-4465 0378-4371 |
url |
http://hdl.handle.net/11336/14865 |
identifier_str_mv |
Acosta Rodriguez, Gabriel; Caridi, Délida Inés; Guala, Sebastián; Marenco, Javier; The quasi-periodicity of the Minority Game revisited; Elsevier; Physica A: Statistical Mechanics And Its Applications; 392; 19; 04-6-2013; 4450-4465 0378-4371 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2013.05.038 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0378437113004792 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614407572684800 |
score |
13.070432 |