The quasi-periodicity of the Minority Game revisited

Autores
Acosta Rodriguez, Gabriel; Caridi, Délida Inés; Guala, Sebastián; Marenco, Javier
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We analyze two well-known related aspects regarding the sequence of minority sides from the Minority Game (MG) in its symmetric phase: period-two dynamics and quasi-periodic behavior. We also study the sequence of minority sides in a general way within a graph-theoretical framework. In order to analyze the outcome dynamics of the MG, it is useful to define the MG prior, namely an MG with a new choosing rule of the strategy to play, which takes into account both prior preferences and game information. In this way, each time an agent is undecided because two of her best strategies predict different choices while being equally successful so far, she selects her a priori favorite strategy to play, instead of performing a random tie-break as in the MG. This new choosing rule leaves the generic behavior of the model unaffected and simplifies the game analysis. Furthermore, interesting properties arise which are only partially present in the MG, like the quasi-periodic behavior of the sequence of minority sides, which turns out to be periodic for the MG prior.
Fil: Acosta Rodriguez, Gabriel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Caridi, Délida Inés. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Guala, Sebastián. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
Fil: Marenco, Javier. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
Materia
Minority game
Quasi-periodic behavior
Choosing rule
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/14865

id CONICETDig_513d4a79e78413e1e5950c8ae6956ca8
oai_identifier_str oai:ri.conicet.gov.ar:11336/14865
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The quasi-periodicity of the Minority Game revisitedAcosta Rodriguez, GabrielCaridi, Délida InésGuala, SebastiánMarenco, JavierMinority gameQuasi-periodic behaviorChoosing rulehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We analyze two well-known related aspects regarding the sequence of minority sides from the Minority Game (MG) in its symmetric phase: period-two dynamics and quasi-periodic behavior. We also study the sequence of minority sides in a general way within a graph-theoretical framework. In order to analyze the outcome dynamics of the MG, it is useful to define the MG prior, namely an MG with a new choosing rule of the strategy to play, which takes into account both prior preferences and game information. In this way, each time an agent is undecided because two of her best strategies predict different choices while being equally successful so far, she selects her a priori favorite strategy to play, instead of performing a random tie-break as in the MG. This new choosing rule leaves the generic behavior of the model unaffected and simplifies the game analysis. Furthermore, interesting properties arise which are only partially present in the MG, like the quasi-periodic behavior of the sequence of minority sides, which turns out to be periodic for the MG prior.Fil: Acosta Rodriguez, Gabriel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Caridi, Délida Inés. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Guala, Sebastián. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaFil: Marenco, Javier. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaElsevier2013-06-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/14865Acosta Rodriguez, Gabriel; Caridi, Délida Inés; Guala, Sebastián; Marenco, Javier; The quasi-periodicity of the Minority Game revisited; Elsevier; Physica A: Statistical Mechanics And Its Applications; 392; 19; 04-6-2013; 4450-44650378-4371enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2013.05.038info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0378437113004792info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:38:28Zoai:ri.conicet.gov.ar:11336/14865instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:38:29.097CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The quasi-periodicity of the Minority Game revisited
title The quasi-periodicity of the Minority Game revisited
spellingShingle The quasi-periodicity of the Minority Game revisited
Acosta Rodriguez, Gabriel
Minority game
Quasi-periodic behavior
Choosing rule
title_short The quasi-periodicity of the Minority Game revisited
title_full The quasi-periodicity of the Minority Game revisited
title_fullStr The quasi-periodicity of the Minority Game revisited
title_full_unstemmed The quasi-periodicity of the Minority Game revisited
title_sort The quasi-periodicity of the Minority Game revisited
dc.creator.none.fl_str_mv Acosta Rodriguez, Gabriel
Caridi, Délida Inés
Guala, Sebastián
Marenco, Javier
author Acosta Rodriguez, Gabriel
author_facet Acosta Rodriguez, Gabriel
Caridi, Délida Inés
Guala, Sebastián
Marenco, Javier
author_role author
author2 Caridi, Délida Inés
Guala, Sebastián
Marenco, Javier
author2_role author
author
author
dc.subject.none.fl_str_mv Minority game
Quasi-periodic behavior
Choosing rule
topic Minority game
Quasi-periodic behavior
Choosing rule
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We analyze two well-known related aspects regarding the sequence of minority sides from the Minority Game (MG) in its symmetric phase: period-two dynamics and quasi-periodic behavior. We also study the sequence of minority sides in a general way within a graph-theoretical framework. In order to analyze the outcome dynamics of the MG, it is useful to define the MG prior, namely an MG with a new choosing rule of the strategy to play, which takes into account both prior preferences and game information. In this way, each time an agent is undecided because two of her best strategies predict different choices while being equally successful so far, she selects her a priori favorite strategy to play, instead of performing a random tie-break as in the MG. This new choosing rule leaves the generic behavior of the model unaffected and simplifies the game analysis. Furthermore, interesting properties arise which are only partially present in the MG, like the quasi-periodic behavior of the sequence of minority sides, which turns out to be periodic for the MG prior.
Fil: Acosta Rodriguez, Gabriel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Caridi, Délida Inés. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Guala, Sebastián. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
Fil: Marenco, Javier. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
description We analyze two well-known related aspects regarding the sequence of minority sides from the Minority Game (MG) in its symmetric phase: period-two dynamics and quasi-periodic behavior. We also study the sequence of minority sides in a general way within a graph-theoretical framework. In order to analyze the outcome dynamics of the MG, it is useful to define the MG prior, namely an MG with a new choosing rule of the strategy to play, which takes into account both prior preferences and game information. In this way, each time an agent is undecided because two of her best strategies predict different choices while being equally successful so far, she selects her a priori favorite strategy to play, instead of performing a random tie-break as in the MG. This new choosing rule leaves the generic behavior of the model unaffected and simplifies the game analysis. Furthermore, interesting properties arise which are only partially present in the MG, like the quasi-periodic behavior of the sequence of minority sides, which turns out to be periodic for the MG prior.
publishDate 2013
dc.date.none.fl_str_mv 2013-06-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/14865
Acosta Rodriguez, Gabriel; Caridi, Délida Inés; Guala, Sebastián; Marenco, Javier; The quasi-periodicity of the Minority Game revisited; Elsevier; Physica A: Statistical Mechanics And Its Applications; 392; 19; 04-6-2013; 4450-4465
0378-4371
url http://hdl.handle.net/11336/14865
identifier_str_mv Acosta Rodriguez, Gabriel; Caridi, Délida Inés; Guala, Sebastián; Marenco, Javier; The quasi-periodicity of the Minority Game revisited; Elsevier; Physica A: Statistical Mechanics And Its Applications; 392; 19; 04-6-2013; 4450-4465
0378-4371
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2013.05.038
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0378437113004792
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614407572684800
score 13.070432