The Full Strategy Minority Game

Autores
Caridi, Délida Inés; Guala, Sebastian Diego; Acosta Rodriguez, Gabriel; Marenco, Javier Leonardo
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The Full Strategy Minority Game (FSMG) is an instance of the Minority Game (MG) which includes a single copy of every potential agent. In this work, we explicitly solve the FSMG thanks to certain symmetries of this game. Furthermore, by considering the MG as a statistical sample of the FSMG, we compute approximated values of the key variable σ 2 /N in the symmetric phase for different versions of the MG. As another application we prove that our results can be easily modified in order to handle certain kinds of initial biased strategy scores, in particular when the bias is introduced at the agents’ level. We also show that the FSMG verifies a strict period two dynamics (i.e., period two dynamics satisfied with probability 1) giving, to the best of our knowledge, the first example of an instance of the MG for which this feature can be analytically proved. Thanks to this property, it is possible to compute in a simple way the probability that a general instance of the MG breaks the period two dynamics for the first time in a given simulation.
Fil: Caridi, Délida Inés. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Guala, Sebastian Diego. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Acosta Rodriguez, Gabriel. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Marenco, Javier Leonardo. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
Materia
Minority Game
Period Two Dynamics
Updating Rule
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/19889

id CONICETDig_3cdff8678e02299b09ed6fbc395db5e5
oai_identifier_str oai:ri.conicet.gov.ar:11336/19889
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The Full Strategy Minority GameCaridi, Délida InésGuala, Sebastian DiegoAcosta Rodriguez, GabrielMarenco, Javier LeonardoMinority GamePeriod Two DynamicsUpdating Rulehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The Full Strategy Minority Game (FSMG) is an instance of the Minority Game (MG) which includes a single copy of every potential agent. In this work, we explicitly solve the FSMG thanks to certain symmetries of this game. Furthermore, by considering the MG as a statistical sample of the FSMG, we compute approximated values of the key variable σ 2 /N in the symmetric phase for different versions of the MG. As another application we prove that our results can be easily modified in order to handle certain kinds of initial biased strategy scores, in particular when the bias is introduced at the agents’ level. We also show that the FSMG verifies a strict period two dynamics (i.e., period two dynamics satisfied with probability 1) giving, to the best of our knowledge, the first example of an instance of the MG for which this feature can be analytically proved. Thanks to this property, it is possible to compute in a simple way the probability that a general instance of the MG breaks the period two dynamics for the first time in a given simulation.Fil: Caridi, Délida Inés. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Guala, Sebastian Diego. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Acosta Rodriguez, Gabriel. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Marenco, Javier Leonardo. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaElsevier Science2012-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19889Caridi, Délida Inés; Guala, Sebastian Diego; Acosta Rodriguez, Gabriel; Marenco, Javier Leonardo; The Full Strategy Minority Game; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 391; 1-2; 1-2012; 217-2300378-4371CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2011.07.049info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S037843711100598Xinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1101.5828info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:14:19Zoai:ri.conicet.gov.ar:11336/19889instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:14:19.477CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The Full Strategy Minority Game
title The Full Strategy Minority Game
spellingShingle The Full Strategy Minority Game
Caridi, Délida Inés
Minority Game
Period Two Dynamics
Updating Rule
title_short The Full Strategy Minority Game
title_full The Full Strategy Minority Game
title_fullStr The Full Strategy Minority Game
title_full_unstemmed The Full Strategy Minority Game
title_sort The Full Strategy Minority Game
dc.creator.none.fl_str_mv Caridi, Délida Inés
Guala, Sebastian Diego
Acosta Rodriguez, Gabriel
Marenco, Javier Leonardo
author Caridi, Délida Inés
author_facet Caridi, Délida Inés
Guala, Sebastian Diego
Acosta Rodriguez, Gabriel
Marenco, Javier Leonardo
author_role author
author2 Guala, Sebastian Diego
Acosta Rodriguez, Gabriel
Marenco, Javier Leonardo
author2_role author
author
author
dc.subject.none.fl_str_mv Minority Game
Period Two Dynamics
Updating Rule
topic Minority Game
Period Two Dynamics
Updating Rule
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The Full Strategy Minority Game (FSMG) is an instance of the Minority Game (MG) which includes a single copy of every potential agent. In this work, we explicitly solve the FSMG thanks to certain symmetries of this game. Furthermore, by considering the MG as a statistical sample of the FSMG, we compute approximated values of the key variable σ 2 /N in the symmetric phase for different versions of the MG. As another application we prove that our results can be easily modified in order to handle certain kinds of initial biased strategy scores, in particular when the bias is introduced at the agents’ level. We also show that the FSMG verifies a strict period two dynamics (i.e., period two dynamics satisfied with probability 1) giving, to the best of our knowledge, the first example of an instance of the MG for which this feature can be analytically proved. Thanks to this property, it is possible to compute in a simple way the probability that a general instance of the MG breaks the period two dynamics for the first time in a given simulation.
Fil: Caridi, Délida Inés. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Guala, Sebastian Diego. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Acosta Rodriguez, Gabriel. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Marenco, Javier Leonardo. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
description The Full Strategy Minority Game (FSMG) is an instance of the Minority Game (MG) which includes a single copy of every potential agent. In this work, we explicitly solve the FSMG thanks to certain symmetries of this game. Furthermore, by considering the MG as a statistical sample of the FSMG, we compute approximated values of the key variable σ 2 /N in the symmetric phase for different versions of the MG. As another application we prove that our results can be easily modified in order to handle certain kinds of initial biased strategy scores, in particular when the bias is introduced at the agents’ level. We also show that the FSMG verifies a strict period two dynamics (i.e., period two dynamics satisfied with probability 1) giving, to the best of our knowledge, the first example of an instance of the MG for which this feature can be analytically proved. Thanks to this property, it is possible to compute in a simple way the probability that a general instance of the MG breaks the period two dynamics for the first time in a given simulation.
publishDate 2012
dc.date.none.fl_str_mv 2012-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/19889
Caridi, Délida Inés; Guala, Sebastian Diego; Acosta Rodriguez, Gabriel; Marenco, Javier Leonardo; The Full Strategy Minority Game; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 391; 1-2; 1-2012; 217-230
0378-4371
CONICET Digital
CONICET
url http://hdl.handle.net/11336/19889
identifier_str_mv Caridi, Délida Inés; Guala, Sebastian Diego; Acosta Rodriguez, Gabriel; Marenco, Javier Leonardo; The Full Strategy Minority Game; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 391; 1-2; 1-2012; 217-230
0378-4371
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2011.07.049
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S037843711100598X
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1101.5828
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614069875638272
score 13.070432