Effects of Mixed Baculovirus Infections in Biological Control: A Comprehensive Historical and Technical Analysis

Autores
Ferrelli, Maria Leticia; Salvador, Ricardo
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Baculoviruses are insect-specific DNA viruses that have been exploited as bioinsecticides for the control of agricultural and forest pests around the world. Mixed infections with two different baculoviruses have been found in nature, infecting the same host. They have been studied to understand the biology of virus interactions, their effects on susceptible insects, and their insecticidal implications. In this work, we summarize and analyze the in vivo baculovirus co-infections reported in the literature, mainly focusing on pest biocontrol applications. We discuss the most common terms used to describe the effects of mixed infections, such as synergism, neutralism, and antagonism, and how to determine them based on host mortality. Frequently, baculovirus co-infections found in nature are caused by a combination of a nucleopolyhedrovirus and a granulovirus. Studies performed with mixed infections indicated that viral dose, larval stage, or the presence of synergistic factors in baculovirus occlusion bodies are important for the type of virus interaction. We also enumerate and discuss technical aspects to take into account in studies on mixed infections, such as statistical procedures, quantification of viral inocula, the selection of instars, and molecular methodologies for an appropriate analysis of baculovirus interaction. Several experimental infections using two different baculoviruses demonstrated increased viral mortality or a synergistic effect on the target larvae compared to single infections. This can be exploited to improve the baculovirus-killing properties of commercial formulations. In this work, we offer a current overview of baculovirus interactions in vivo and discuss their potential applications in pest control strategies.
Fil: Ferrelli, Maria Leticia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Biotecnología y Biología Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Biotecnología y Biología Molecular; Argentina
Fil: Salvador, Ricardo. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Microbiología y Zoología Agrícola; Argentina
Materia
SYNERGISM
ANTAGONISM
ADDITIVE EFFECT
BIOCONTROL
BACULOVIRUS MIXTURE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/230141

id CONICETDig_511ec87240287954a6a3743801fb9a29
oai_identifier_str oai:ri.conicet.gov.ar:11336/230141
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Effects of Mixed Baculovirus Infections in Biological Control: A Comprehensive Historical and Technical AnalysisFerrelli, Maria LeticiaSalvador, RicardoSYNERGISMANTAGONISMADDITIVE EFFECTBIOCONTROLBACULOVIRUS MIXTUREhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Baculoviruses are insect-specific DNA viruses that have been exploited as bioinsecticides for the control of agricultural and forest pests around the world. Mixed infections with two different baculoviruses have been found in nature, infecting the same host. They have been studied to understand the biology of virus interactions, their effects on susceptible insects, and their insecticidal implications. In this work, we summarize and analyze the in vivo baculovirus co-infections reported in the literature, mainly focusing on pest biocontrol applications. We discuss the most common terms used to describe the effects of mixed infections, such as synergism, neutralism, and antagonism, and how to determine them based on host mortality. Frequently, baculovirus co-infections found in nature are caused by a combination of a nucleopolyhedrovirus and a granulovirus. Studies performed with mixed infections indicated that viral dose, larval stage, or the presence of synergistic factors in baculovirus occlusion bodies are important for the type of virus interaction. We also enumerate and discuss technical aspects to take into account in studies on mixed infections, such as statistical procedures, quantification of viral inocula, the selection of instars, and molecular methodologies for an appropriate analysis of baculovirus interaction. Several experimental infections using two different baculoviruses demonstrated increased viral mortality or a synergistic effect on the target larvae compared to single infections. This can be exploited to improve the baculovirus-killing properties of commercial formulations. In this work, we offer a current overview of baculovirus interactions in vivo and discuss their potential applications in pest control strategies.Fil: Ferrelli, Maria Leticia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Biotecnología y Biología Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Biotecnología y Biología Molecular; ArgentinaFil: Salvador, Ricardo. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Microbiología y Zoología Agrícola; ArgentinaMDPI2023-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/230141Ferrelli, Maria Leticia; Salvador, Ricardo; Effects of Mixed Baculovirus Infections in Biological Control: A Comprehensive Historical and Technical Analysis; MDPI; Viruses; 15; 9; 8-2023; 1-241999-4915CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1999-4915/15/9/1838info:eu-repo/semantics/altIdentifier/doi/10.3390/v15091838info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:32:03Zoai:ri.conicet.gov.ar:11336/230141instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:32:04.057CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Effects of Mixed Baculovirus Infections in Biological Control: A Comprehensive Historical and Technical Analysis
title Effects of Mixed Baculovirus Infections in Biological Control: A Comprehensive Historical and Technical Analysis
spellingShingle Effects of Mixed Baculovirus Infections in Biological Control: A Comprehensive Historical and Technical Analysis
Ferrelli, Maria Leticia
SYNERGISM
ANTAGONISM
ADDITIVE EFFECT
BIOCONTROL
BACULOVIRUS MIXTURE
title_short Effects of Mixed Baculovirus Infections in Biological Control: A Comprehensive Historical and Technical Analysis
title_full Effects of Mixed Baculovirus Infections in Biological Control: A Comprehensive Historical and Technical Analysis
title_fullStr Effects of Mixed Baculovirus Infections in Biological Control: A Comprehensive Historical and Technical Analysis
title_full_unstemmed Effects of Mixed Baculovirus Infections in Biological Control: A Comprehensive Historical and Technical Analysis
title_sort Effects of Mixed Baculovirus Infections in Biological Control: A Comprehensive Historical and Technical Analysis
dc.creator.none.fl_str_mv Ferrelli, Maria Leticia
Salvador, Ricardo
author Ferrelli, Maria Leticia
author_facet Ferrelli, Maria Leticia
Salvador, Ricardo
author_role author
author2 Salvador, Ricardo
author2_role author
dc.subject.none.fl_str_mv SYNERGISM
ANTAGONISM
ADDITIVE EFFECT
BIOCONTROL
BACULOVIRUS MIXTURE
topic SYNERGISM
ANTAGONISM
ADDITIVE EFFECT
BIOCONTROL
BACULOVIRUS MIXTURE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Baculoviruses are insect-specific DNA viruses that have been exploited as bioinsecticides for the control of agricultural and forest pests around the world. Mixed infections with two different baculoviruses have been found in nature, infecting the same host. They have been studied to understand the biology of virus interactions, their effects on susceptible insects, and their insecticidal implications. In this work, we summarize and analyze the in vivo baculovirus co-infections reported in the literature, mainly focusing on pest biocontrol applications. We discuss the most common terms used to describe the effects of mixed infections, such as synergism, neutralism, and antagonism, and how to determine them based on host mortality. Frequently, baculovirus co-infections found in nature are caused by a combination of a nucleopolyhedrovirus and a granulovirus. Studies performed with mixed infections indicated that viral dose, larval stage, or the presence of synergistic factors in baculovirus occlusion bodies are important for the type of virus interaction. We also enumerate and discuss technical aspects to take into account in studies on mixed infections, such as statistical procedures, quantification of viral inocula, the selection of instars, and molecular methodologies for an appropriate analysis of baculovirus interaction. Several experimental infections using two different baculoviruses demonstrated increased viral mortality or a synergistic effect on the target larvae compared to single infections. This can be exploited to improve the baculovirus-killing properties of commercial formulations. In this work, we offer a current overview of baculovirus interactions in vivo and discuss their potential applications in pest control strategies.
Fil: Ferrelli, Maria Leticia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Biotecnología y Biología Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Biotecnología y Biología Molecular; Argentina
Fil: Salvador, Ricardo. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Microbiología y Zoología Agrícola; Argentina
description Baculoviruses are insect-specific DNA viruses that have been exploited as bioinsecticides for the control of agricultural and forest pests around the world. Mixed infections with two different baculoviruses have been found in nature, infecting the same host. They have been studied to understand the biology of virus interactions, their effects on susceptible insects, and their insecticidal implications. In this work, we summarize and analyze the in vivo baculovirus co-infections reported in the literature, mainly focusing on pest biocontrol applications. We discuss the most common terms used to describe the effects of mixed infections, such as synergism, neutralism, and antagonism, and how to determine them based on host mortality. Frequently, baculovirus co-infections found in nature are caused by a combination of a nucleopolyhedrovirus and a granulovirus. Studies performed with mixed infections indicated that viral dose, larval stage, or the presence of synergistic factors in baculovirus occlusion bodies are important for the type of virus interaction. We also enumerate and discuss technical aspects to take into account in studies on mixed infections, such as statistical procedures, quantification of viral inocula, the selection of instars, and molecular methodologies for an appropriate analysis of baculovirus interaction. Several experimental infections using two different baculoviruses demonstrated increased viral mortality or a synergistic effect on the target larvae compared to single infections. This can be exploited to improve the baculovirus-killing properties of commercial formulations. In this work, we offer a current overview of baculovirus interactions in vivo and discuss their potential applications in pest control strategies.
publishDate 2023
dc.date.none.fl_str_mv 2023-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/230141
Ferrelli, Maria Leticia; Salvador, Ricardo; Effects of Mixed Baculovirus Infections in Biological Control: A Comprehensive Historical and Technical Analysis; MDPI; Viruses; 15; 9; 8-2023; 1-24
1999-4915
CONICET Digital
CONICET
url http://hdl.handle.net/11336/230141
identifier_str_mv Ferrelli, Maria Leticia; Salvador, Ricardo; Effects of Mixed Baculovirus Infections in Biological Control: A Comprehensive Historical and Technical Analysis; MDPI; Viruses; 15; 9; 8-2023; 1-24
1999-4915
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1999-4915/15/9/1838
info:eu-repo/semantics/altIdentifier/doi/10.3390/v15091838
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614333217112064
score 13.070432