Optimization of the hydrolysis of lignocellulosic residues by using radial basis functions modeling and particle swarm optimization
- Autores
- Giordano, Pablo César; Beccaria, Alejandro José; Goicoechea, Hector Casimiro; Olivieri, Alejandro Cesar
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The concentrations of glucose and total reducing sugars obtained by chemical hydrolysis of three different lignocellulosic feedstocks were maximized. Two response surface methodologies were applied to model the amount of sugars produced: (1) classical quadratic least-squares fit (QLS), and (2) artificial neural networks based on radial basis functions (RBF). The results obtained by applying RBF were more reliable and better statistical parameters were obtained. Depending on the type of biomass, different results wereobtained. Improvements in fit between 35% and 55% were obtained when comparing the coefficients of determination (R2) computed for both QLS and RBF methods. Coupling the obtained RBF models with particle swarm optimization to calculate the global desirability function, allowed to perform multiple response optimization. The predicted optimal conditions were confirmed by carrying out independent experiments.
Fil: Giordano, Pablo César. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
Fil: Beccaria, Alejandro José. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas; Argentina
Fil: Goicoechea, Hector Casimiro. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas; Argentina
Fil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina - Materia
-
Glucose
Modelling
Optimization
Artificial intelligence
Particle swarm optimization
Radial basis functions - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/101885
Ver los metadatos del registro completo
id |
CONICETDig_503249b9029ac4ad1ad5128003dca765 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/101885 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Optimization of the hydrolysis of lignocellulosic residues by using radial basis functions modeling and particle swarm optimizationGiordano, Pablo CésarBeccaria, Alejandro JoséGoicoechea, Hector CasimiroOlivieri, Alejandro CesarGlucoseModellingOptimizationArtificial intelligenceParticle swarm optimizationRadial basis functionshttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1The concentrations of glucose and total reducing sugars obtained by chemical hydrolysis of three different lignocellulosic feedstocks were maximized. Two response surface methodologies were applied to model the amount of sugars produced: (1) classical quadratic least-squares fit (QLS), and (2) artificial neural networks based on radial basis functions (RBF). The results obtained by applying RBF were more reliable and better statistical parameters were obtained. Depending on the type of biomass, different results wereobtained. Improvements in fit between 35% and 55% were obtained when comparing the coefficients of determination (R2) computed for both QLS and RBF methods. Coupling the obtained RBF models with particle swarm optimization to calculate the global desirability function, allowed to perform multiple response optimization. The predicted optimal conditions were confirmed by carrying out independent experiments.Fil: Giordano, Pablo César. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaFil: Beccaria, Alejandro José. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas; ArgentinaFil: Goicoechea, Hector Casimiro. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas; ArgentinaFil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; ArgentinaElsevier Science Sa2013-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/101885Giordano, Pablo César; Beccaria, Alejandro José; Goicoechea, Hector Casimiro; Olivieri, Alejandro Cesar; Optimization of the hydrolysis of lignocellulosic residues by using radial basis functions modeling and particle swarm optimization; Elsevier Science Sa; Biochemical Engineering Journal; 80; 10-2013; 1-91369-703XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.bej.2013.09.004info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:18:26Zoai:ri.conicet.gov.ar:11336/101885instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:18:26.723CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Optimization of the hydrolysis of lignocellulosic residues by using radial basis functions modeling and particle swarm optimization |
title |
Optimization of the hydrolysis of lignocellulosic residues by using radial basis functions modeling and particle swarm optimization |
spellingShingle |
Optimization of the hydrolysis of lignocellulosic residues by using radial basis functions modeling and particle swarm optimization Giordano, Pablo César Glucose Modelling Optimization Artificial intelligence Particle swarm optimization Radial basis functions |
title_short |
Optimization of the hydrolysis of lignocellulosic residues by using radial basis functions modeling and particle swarm optimization |
title_full |
Optimization of the hydrolysis of lignocellulosic residues by using radial basis functions modeling and particle swarm optimization |
title_fullStr |
Optimization of the hydrolysis of lignocellulosic residues by using radial basis functions modeling and particle swarm optimization |
title_full_unstemmed |
Optimization of the hydrolysis of lignocellulosic residues by using radial basis functions modeling and particle swarm optimization |
title_sort |
Optimization of the hydrolysis of lignocellulosic residues by using radial basis functions modeling and particle swarm optimization |
dc.creator.none.fl_str_mv |
Giordano, Pablo César Beccaria, Alejandro José Goicoechea, Hector Casimiro Olivieri, Alejandro Cesar |
author |
Giordano, Pablo César |
author_facet |
Giordano, Pablo César Beccaria, Alejandro José Goicoechea, Hector Casimiro Olivieri, Alejandro Cesar |
author_role |
author |
author2 |
Beccaria, Alejandro José Goicoechea, Hector Casimiro Olivieri, Alejandro Cesar |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Glucose Modelling Optimization Artificial intelligence Particle swarm optimization Radial basis functions |
topic |
Glucose Modelling Optimization Artificial intelligence Particle swarm optimization Radial basis functions |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The concentrations of glucose and total reducing sugars obtained by chemical hydrolysis of three different lignocellulosic feedstocks were maximized. Two response surface methodologies were applied to model the amount of sugars produced: (1) classical quadratic least-squares fit (QLS), and (2) artificial neural networks based on radial basis functions (RBF). The results obtained by applying RBF were more reliable and better statistical parameters were obtained. Depending on the type of biomass, different results wereobtained. Improvements in fit between 35% and 55% were obtained when comparing the coefficients of determination (R2) computed for both QLS and RBF methods. Coupling the obtained RBF models with particle swarm optimization to calculate the global desirability function, allowed to perform multiple response optimization. The predicted optimal conditions were confirmed by carrying out independent experiments. Fil: Giordano, Pablo César. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina Fil: Beccaria, Alejandro José. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas; Argentina Fil: Goicoechea, Hector Casimiro. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas; Argentina Fil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina |
description |
The concentrations of glucose and total reducing sugars obtained by chemical hydrolysis of three different lignocellulosic feedstocks were maximized. Two response surface methodologies were applied to model the amount of sugars produced: (1) classical quadratic least-squares fit (QLS), and (2) artificial neural networks based on radial basis functions (RBF). The results obtained by applying RBF were more reliable and better statistical parameters were obtained. Depending on the type of biomass, different results wereobtained. Improvements in fit between 35% and 55% were obtained when comparing the coefficients of determination (R2) computed for both QLS and RBF methods. Coupling the obtained RBF models with particle swarm optimization to calculate the global desirability function, allowed to perform multiple response optimization. The predicted optimal conditions were confirmed by carrying out independent experiments. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/101885 Giordano, Pablo César; Beccaria, Alejandro José; Goicoechea, Hector Casimiro; Olivieri, Alejandro Cesar; Optimization of the hydrolysis of lignocellulosic residues by using radial basis functions modeling and particle swarm optimization; Elsevier Science Sa; Biochemical Engineering Journal; 80; 10-2013; 1-9 1369-703X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/101885 |
identifier_str_mv |
Giordano, Pablo César; Beccaria, Alejandro José; Goicoechea, Hector Casimiro; Olivieri, Alejandro Cesar; Optimization of the hydrolysis of lignocellulosic residues by using radial basis functions modeling and particle swarm optimization; Elsevier Science Sa; Biochemical Engineering Journal; 80; 10-2013; 1-9 1369-703X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.bej.2013.09.004 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science Sa |
publisher.none.fl_str_mv |
Elsevier Science Sa |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083333568593920 |
score |
13.22299 |