Ion Flux of Confined Ion Mixtures
- Autores
- Marañon Di Leo, Julio
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The transport of ions in a confined solution at nano-meter scale is critical for the function of inorganic and biological membranes. Then, it is important to study the effect of nano-confinement of ion transportation by computer simulation. To focus on the effect of nano-confinement, it is useful to investigate ion transport by that means. To reduce computational time, simple electrolyte models can be used. The structure of the water molecules surrounding an ion is described by the ion-atom radial distribution function (RDF). Ion size trends are those to be expected on intuitive grounds, in addition to the position and height of the first peaks. The height of the first peak diminished as cation size increased, thus implying a weakening of the cation. The purpose of this study was to apply an external electric field at the ends of a flexible nanopores contained configured as an electrolyte model under periodic boundary conditions, with molecular dynamics (MD). The results show several ion currents. The electrolyte model was composed of three Na+/K+ concentration ratios in aqueous solutions. For both cations, the radial distribution function (RDF) g(s) does not depend neither on voltage nor cation mixtures. Na+ current-voltage (I-V) curves change for low Na+ concentrations only.
Fil: Marañon Di Leo, Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Aeronáutica. Laboratorio de Capa Límite y Fluído Dinámica Ambiental; Argentina - Materia
-
CONFINEMENTE
RECTANGULAR NANOPORE
EXTERNAL ELECTRIC POTENTIAL - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/231447
Ver los metadatos del registro completo
id |
CONICETDig_4f582eae1d3aee43c557b73e201f94b2 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/231447 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Ion Flux of Confined Ion MixturesMarañon Di Leo, JulioCONFINEMENTERECTANGULAR NANOPOREEXTERNAL ELECTRIC POTENTIALhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1The transport of ions in a confined solution at nano-meter scale is critical for the function of inorganic and biological membranes. Then, it is important to study the effect of nano-confinement of ion transportation by computer simulation. To focus on the effect of nano-confinement, it is useful to investigate ion transport by that means. To reduce computational time, simple electrolyte models can be used. The structure of the water molecules surrounding an ion is described by the ion-atom radial distribution function (RDF). Ion size trends are those to be expected on intuitive grounds, in addition to the position and height of the first peaks. The height of the first peak diminished as cation size increased, thus implying a weakening of the cation. The purpose of this study was to apply an external electric field at the ends of a flexible nanopores contained configured as an electrolyte model under periodic boundary conditions, with molecular dynamics (MD). The results show several ion currents. The electrolyte model was composed of three Na+/K+ concentration ratios in aqueous solutions. For both cations, the radial distribution function (RDF) g(s) does not depend neither on voltage nor cation mixtures. Na+ current-voltage (I-V) curves change for low Na+ concentrations only.Fil: Marañon Di Leo, Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Aeronáutica. Laboratorio de Capa Límite y Fluído Dinámica Ambiental; ArgentinaLeon Publications2023-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/231447Marañon Di Leo, Julio; Ion Flux of Confined Ion Mixtures; Leon Publications; Journal of Scientific and Engineering Research; 10; 12; 12-2023; 120-1252394-2630CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://jsaer.com/download/vol-10-iss-12-2023/JSAER2023-10-12-120-125.pdfinfo:eu-repo/semantics/altIdentifier/doi/10.5281/zenodo.10466521info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:57:23Zoai:ri.conicet.gov.ar:11336/231447instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:57:24.41CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Ion Flux of Confined Ion Mixtures |
title |
Ion Flux of Confined Ion Mixtures |
spellingShingle |
Ion Flux of Confined Ion Mixtures Marañon Di Leo, Julio CONFINEMENTE RECTANGULAR NANOPORE EXTERNAL ELECTRIC POTENTIAL |
title_short |
Ion Flux of Confined Ion Mixtures |
title_full |
Ion Flux of Confined Ion Mixtures |
title_fullStr |
Ion Flux of Confined Ion Mixtures |
title_full_unstemmed |
Ion Flux of Confined Ion Mixtures |
title_sort |
Ion Flux of Confined Ion Mixtures |
dc.creator.none.fl_str_mv |
Marañon Di Leo, Julio |
author |
Marañon Di Leo, Julio |
author_facet |
Marañon Di Leo, Julio |
author_role |
author |
dc.subject.none.fl_str_mv |
CONFINEMENTE RECTANGULAR NANOPORE EXTERNAL ELECTRIC POTENTIAL |
topic |
CONFINEMENTE RECTANGULAR NANOPORE EXTERNAL ELECTRIC POTENTIAL |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The transport of ions in a confined solution at nano-meter scale is critical for the function of inorganic and biological membranes. Then, it is important to study the effect of nano-confinement of ion transportation by computer simulation. To focus on the effect of nano-confinement, it is useful to investigate ion transport by that means. To reduce computational time, simple electrolyte models can be used. The structure of the water molecules surrounding an ion is described by the ion-atom radial distribution function (RDF). Ion size trends are those to be expected on intuitive grounds, in addition to the position and height of the first peaks. The height of the first peak diminished as cation size increased, thus implying a weakening of the cation. The purpose of this study was to apply an external electric field at the ends of a flexible nanopores contained configured as an electrolyte model under periodic boundary conditions, with molecular dynamics (MD). The results show several ion currents. The electrolyte model was composed of three Na+/K+ concentration ratios in aqueous solutions. For both cations, the radial distribution function (RDF) g(s) does not depend neither on voltage nor cation mixtures. Na+ current-voltage (I-V) curves change for low Na+ concentrations only. Fil: Marañon Di Leo, Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Aeronáutica. Laboratorio de Capa Límite y Fluído Dinámica Ambiental; Argentina |
description |
The transport of ions in a confined solution at nano-meter scale is critical for the function of inorganic and biological membranes. Then, it is important to study the effect of nano-confinement of ion transportation by computer simulation. To focus on the effect of nano-confinement, it is useful to investigate ion transport by that means. To reduce computational time, simple electrolyte models can be used. The structure of the water molecules surrounding an ion is described by the ion-atom radial distribution function (RDF). Ion size trends are those to be expected on intuitive grounds, in addition to the position and height of the first peaks. The height of the first peak diminished as cation size increased, thus implying a weakening of the cation. The purpose of this study was to apply an external electric field at the ends of a flexible nanopores contained configured as an electrolyte model under periodic boundary conditions, with molecular dynamics (MD). The results show several ion currents. The electrolyte model was composed of three Na+/K+ concentration ratios in aqueous solutions. For both cations, the radial distribution function (RDF) g(s) does not depend neither on voltage nor cation mixtures. Na+ current-voltage (I-V) curves change for low Na+ concentrations only. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/231447 Marañon Di Leo, Julio; Ion Flux of Confined Ion Mixtures; Leon Publications; Journal of Scientific and Engineering Research; 10; 12; 12-2023; 120-125 2394-2630 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/231447 |
identifier_str_mv |
Marañon Di Leo, Julio; Ion Flux of Confined Ion Mixtures; Leon Publications; Journal of Scientific and Engineering Research; 10; 12; 12-2023; 120-125 2394-2630 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://jsaer.com/download/vol-10-iss-12-2023/JSAER2023-10-12-120-125.pdf info:eu-repo/semantics/altIdentifier/doi/10.5281/zenodo.10466521 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Leon Publications |
publisher.none.fl_str_mv |
Leon Publications |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269460127285248 |
score |
13.13397 |