Ion Flux of Confined Ion Mixtures

Autores
Marañon Di Leo, Julio
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The transport of ions in a confined solution at nano-meter scale is critical for the function of inorganic and biological membranes. Then, it is important to study the effect of nano-confinement of ion transportation by computer simulation. To focus on the effect of nano-confinement, it is useful to investigate ion transport by that means. To reduce computational time, simple electrolyte models can be used. The structure of the water molecules surrounding an ion is described by the ion-atom radial distribution function (RDF). Ion size trends are those to be expected on intuitive grounds, in addition to the position and height of the first peaks. The height of the first peak diminished as cation size increased, thus implying a weakening of the cation. The purpose of this study was to apply an external electric field at the ends of a flexible nanopores contained configured as an electrolyte model under periodic boundary conditions, with molecular dynamics (MD). The results show several ion currents. The electrolyte model was composed of three Na+/K+ concentration ratios in aqueous solutions. For both cations, the radial distribution function (RDF) g(s) does not depend neither on voltage nor cation mixtures. Na+ current-voltage (I-V) curves change for low Na+ concentrations only.
Fil: Marañon Di Leo, Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Aeronáutica. Laboratorio de Capa Límite y Fluído Dinámica Ambiental; Argentina
Materia
CONFINEMENTE
RECTANGULAR NANOPORE
EXTERNAL ELECTRIC POTENTIAL
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/231447

id CONICETDig_4f582eae1d3aee43c557b73e201f94b2
oai_identifier_str oai:ri.conicet.gov.ar:11336/231447
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Ion Flux of Confined Ion MixturesMarañon Di Leo, JulioCONFINEMENTERECTANGULAR NANOPOREEXTERNAL ELECTRIC POTENTIALhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1The transport of ions in a confined solution at nano-meter scale is critical for the function of inorganic and biological membranes. Then, it is important to study the effect of nano-confinement of ion transportation by computer simulation. To focus on the effect of nano-confinement, it is useful to investigate ion transport by that means. To reduce computational time, simple electrolyte models can be used. The structure of the water molecules surrounding an ion is described by the ion-atom radial distribution function (RDF). Ion size trends are those to be expected on intuitive grounds, in addition to the position and height of the first peaks. The height of the first peak diminished as cation size increased, thus implying a weakening of the cation. The purpose of this study was to apply an external electric field at the ends of a flexible nanopores contained configured as an electrolyte model under periodic boundary conditions, with molecular dynamics (MD). The results show several ion currents. The electrolyte model was composed of three Na+/K+ concentration ratios in aqueous solutions. For both cations, the radial distribution function (RDF) g(s) does not depend neither on voltage nor cation mixtures. Na+ current-voltage (I-V) curves change for low Na+ concentrations only.Fil: Marañon Di Leo, Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Aeronáutica. Laboratorio de Capa Límite y Fluído Dinámica Ambiental; ArgentinaLeon Publications2023-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/231447Marañon Di Leo, Julio; Ion Flux of Confined Ion Mixtures; Leon Publications; Journal of Scientific and Engineering Research; 10; 12; 12-2023; 120-1252394-2630CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://jsaer.com/download/vol-10-iss-12-2023/JSAER2023-10-12-120-125.pdfinfo:eu-repo/semantics/altIdentifier/doi/10.5281/zenodo.10466521info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:57:23Zoai:ri.conicet.gov.ar:11336/231447instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:57:24.41CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Ion Flux of Confined Ion Mixtures
title Ion Flux of Confined Ion Mixtures
spellingShingle Ion Flux of Confined Ion Mixtures
Marañon Di Leo, Julio
CONFINEMENTE
RECTANGULAR NANOPORE
EXTERNAL ELECTRIC POTENTIAL
title_short Ion Flux of Confined Ion Mixtures
title_full Ion Flux of Confined Ion Mixtures
title_fullStr Ion Flux of Confined Ion Mixtures
title_full_unstemmed Ion Flux of Confined Ion Mixtures
title_sort Ion Flux of Confined Ion Mixtures
dc.creator.none.fl_str_mv Marañon Di Leo, Julio
author Marañon Di Leo, Julio
author_facet Marañon Di Leo, Julio
author_role author
dc.subject.none.fl_str_mv CONFINEMENTE
RECTANGULAR NANOPORE
EXTERNAL ELECTRIC POTENTIAL
topic CONFINEMENTE
RECTANGULAR NANOPORE
EXTERNAL ELECTRIC POTENTIAL
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The transport of ions in a confined solution at nano-meter scale is critical for the function of inorganic and biological membranes. Then, it is important to study the effect of nano-confinement of ion transportation by computer simulation. To focus on the effect of nano-confinement, it is useful to investigate ion transport by that means. To reduce computational time, simple electrolyte models can be used. The structure of the water molecules surrounding an ion is described by the ion-atom radial distribution function (RDF). Ion size trends are those to be expected on intuitive grounds, in addition to the position and height of the first peaks. The height of the first peak diminished as cation size increased, thus implying a weakening of the cation. The purpose of this study was to apply an external electric field at the ends of a flexible nanopores contained configured as an electrolyte model under periodic boundary conditions, with molecular dynamics (MD). The results show several ion currents. The electrolyte model was composed of three Na+/K+ concentration ratios in aqueous solutions. For both cations, the radial distribution function (RDF) g(s) does not depend neither on voltage nor cation mixtures. Na+ current-voltage (I-V) curves change for low Na+ concentrations only.
Fil: Marañon Di Leo, Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Aeronáutica. Laboratorio de Capa Límite y Fluído Dinámica Ambiental; Argentina
description The transport of ions in a confined solution at nano-meter scale is critical for the function of inorganic and biological membranes. Then, it is important to study the effect of nano-confinement of ion transportation by computer simulation. To focus on the effect of nano-confinement, it is useful to investigate ion transport by that means. To reduce computational time, simple electrolyte models can be used. The structure of the water molecules surrounding an ion is described by the ion-atom radial distribution function (RDF). Ion size trends are those to be expected on intuitive grounds, in addition to the position and height of the first peaks. The height of the first peak diminished as cation size increased, thus implying a weakening of the cation. The purpose of this study was to apply an external electric field at the ends of a flexible nanopores contained configured as an electrolyte model under periodic boundary conditions, with molecular dynamics (MD). The results show several ion currents. The electrolyte model was composed of three Na+/K+ concentration ratios in aqueous solutions. For both cations, the radial distribution function (RDF) g(s) does not depend neither on voltage nor cation mixtures. Na+ current-voltage (I-V) curves change for low Na+ concentrations only.
publishDate 2023
dc.date.none.fl_str_mv 2023-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/231447
Marañon Di Leo, Julio; Ion Flux of Confined Ion Mixtures; Leon Publications; Journal of Scientific and Engineering Research; 10; 12; 12-2023; 120-125
2394-2630
CONICET Digital
CONICET
url http://hdl.handle.net/11336/231447
identifier_str_mv Marañon Di Leo, Julio; Ion Flux of Confined Ion Mixtures; Leon Publications; Journal of Scientific and Engineering Research; 10; 12; 12-2023; 120-125
2394-2630
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://jsaer.com/download/vol-10-iss-12-2023/JSAER2023-10-12-120-125.pdf
info:eu-repo/semantics/altIdentifier/doi/10.5281/zenodo.10466521
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Leon Publications
publisher.none.fl_str_mv Leon Publications
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269460127285248
score 13.13397