Potential EEG biomarkers of sedation doses in intensive care patients unveiled by using a machine learning approach
- Autores
- Sanz García, Ancor; Pérez Romero, Miriam; Pastor, Jesús; Sola, Rafael G.; Vega Zelaya, Lorena; Vega, Gema; Monasterio, Fernando; Torrecilla, Carmen; Pulido, Paloma; Ortega, Guillermo José
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Objective. Sedation of neurocritically ill patients is one of the most challenging situation in ICUs. Quantitative knowledge on the sedation effect on brain activity in that complex scenario could help to uncover new markers for sedation assessment. Hence, we aim to evaluate the existence of changes of diverse EEG-derived measures in deeply-sedated (RASS-Richmond agitation-sedation scale -4 and -5) neurocritically ill patients, and also whether sedation doses are related with those eventual changes. Approach. We performed an observational prospective cohort study in the intensive care unit of the Hospital de la Princesa. Twenty-six adult patients suffered from traumatic brain injury and subarachnoid hemorrhage were included in the present study. Long-term continuous electroencephalographic (EEG) recordings (2141 h) and hourly annotated information were used to determine the relationship between intravenous sedation infusion doses and network and spectral EEG measures. To do that, two different strategies were followed: assessment of the statistical dependence between both variables using the Spearman correlation rank and by performing an automatic classification method based on a machine learning algorithm. Main results. More than 60% of patients presented a correlation greater than 0.5 in at least one of the calculated EEG measures with the sedation dose. The automatic classification method presented an accuracy of 84.3% in discriminating between different sedation doses. In both cases the nodes' degree was the most relevant measurement. Significance. The results presented here provide evidences of brain activity changes during deep sedation linked to sedation doses. Particularly, the capability of network EEG-derived measures in discriminating between different sedation doses could be the framework for the development of accurate methods for sedation levels assessment.
Fil: Sanz García, Ancor. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; España
Fil: Pérez Romero, Miriam. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; España
Fil: Pastor, Jesús. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; España
Fil: Sola, Rafael G.. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa. Servicio de Neurocirugia. Grupo de Epilepsia; España
Fil: Vega Zelaya, Lorena. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; España
Fil: Vega, Gema. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; España
Fil: Monasterio, Fernando. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; España
Fil: Torrecilla, Carmen. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; España
Fil: Pulido, Paloma. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa. Servicio de Neurocirugia. Grupo de Epilepsia; España
Fil: Ortega, Guillermo José. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
BRAIN NETWORKS
EEG
ICU
MACHINE LEARNING
SEDATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/122820
Ver los metadatos del registro completo
id |
CONICETDig_4ea89ff333e2157416d0b90cb7e2a796 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/122820 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Potential EEG biomarkers of sedation doses in intensive care patients unveiled by using a machine learning approachSanz García, AncorPérez Romero, MiriamPastor, JesúsSola, Rafael G.Vega Zelaya, LorenaVega, GemaMonasterio, FernandoTorrecilla, CarmenPulido, PalomaOrtega, Guillermo JoséBRAIN NETWORKSEEGICUMACHINE LEARNINGSEDATIONhttps://purl.org/becyt/ford/2.6https://purl.org/becyt/ford/2Objective. Sedation of neurocritically ill patients is one of the most challenging situation in ICUs. Quantitative knowledge on the sedation effect on brain activity in that complex scenario could help to uncover new markers for sedation assessment. Hence, we aim to evaluate the existence of changes of diverse EEG-derived measures in deeply-sedated (RASS-Richmond agitation-sedation scale -4 and -5) neurocritically ill patients, and also whether sedation doses are related with those eventual changes. Approach. We performed an observational prospective cohort study in the intensive care unit of the Hospital de la Princesa. Twenty-six adult patients suffered from traumatic brain injury and subarachnoid hemorrhage were included in the present study. Long-term continuous electroencephalographic (EEG) recordings (2141 h) and hourly annotated information were used to determine the relationship between intravenous sedation infusion doses and network and spectral EEG measures. To do that, two different strategies were followed: assessment of the statistical dependence between both variables using the Spearman correlation rank and by performing an automatic classification method based on a machine learning algorithm. Main results. More than 60% of patients presented a correlation greater than 0.5 in at least one of the calculated EEG measures with the sedation dose. The automatic classification method presented an accuracy of 84.3% in discriminating between different sedation doses. In both cases the nodes' degree was the most relevant measurement. Significance. The results presented here provide evidences of brain activity changes during deep sedation linked to sedation doses. Particularly, the capability of network EEG-derived measures in discriminating between different sedation doses could be the framework for the development of accurate methods for sedation levels assessment.Fil: Sanz García, Ancor. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; EspañaFil: Pérez Romero, Miriam. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; EspañaFil: Pastor, Jesús. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; EspañaFil: Sola, Rafael G.. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa. Servicio de Neurocirugia. Grupo de Epilepsia; EspañaFil: Vega Zelaya, Lorena. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; EspañaFil: Vega, Gema. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; EspañaFil: Monasterio, Fernando. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; EspañaFil: Torrecilla, Carmen. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; EspañaFil: Pulido, Paloma. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa. Servicio de Neurocirugia. Grupo de Epilepsia; EspañaFil: Ortega, Guillermo José. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; España. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaIOP Publishing2019-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/122820Sanz García, Ancor; Pérez Romero, Miriam; Pastor, Jesús; Sola, Rafael G.; Vega Zelaya, Lorena; et al.; Potential EEG biomarkers of sedation doses in intensive care patients unveiled by using a machine learning approach; IOP Publishing; Journal of Neural Engineering; 16; 2; 4-2019; 1-111741-2560CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1741-2552/ab039f/datainfo:eu-repo/semantics/altIdentifier/doi/10.1088/1741-2552/ab039finfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:42:45Zoai:ri.conicet.gov.ar:11336/122820instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:42:45.868CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Potential EEG biomarkers of sedation doses in intensive care patients unveiled by using a machine learning approach |
title |
Potential EEG biomarkers of sedation doses in intensive care patients unveiled by using a machine learning approach |
spellingShingle |
Potential EEG biomarkers of sedation doses in intensive care patients unveiled by using a machine learning approach Sanz García, Ancor BRAIN NETWORKS EEG ICU MACHINE LEARNING SEDATION |
title_short |
Potential EEG biomarkers of sedation doses in intensive care patients unveiled by using a machine learning approach |
title_full |
Potential EEG biomarkers of sedation doses in intensive care patients unveiled by using a machine learning approach |
title_fullStr |
Potential EEG biomarkers of sedation doses in intensive care patients unveiled by using a machine learning approach |
title_full_unstemmed |
Potential EEG biomarkers of sedation doses in intensive care patients unveiled by using a machine learning approach |
title_sort |
Potential EEG biomarkers of sedation doses in intensive care patients unveiled by using a machine learning approach |
dc.creator.none.fl_str_mv |
Sanz García, Ancor Pérez Romero, Miriam Pastor, Jesús Sola, Rafael G. Vega Zelaya, Lorena Vega, Gema Monasterio, Fernando Torrecilla, Carmen Pulido, Paloma Ortega, Guillermo José |
author |
Sanz García, Ancor |
author_facet |
Sanz García, Ancor Pérez Romero, Miriam Pastor, Jesús Sola, Rafael G. Vega Zelaya, Lorena Vega, Gema Monasterio, Fernando Torrecilla, Carmen Pulido, Paloma Ortega, Guillermo José |
author_role |
author |
author2 |
Pérez Romero, Miriam Pastor, Jesús Sola, Rafael G. Vega Zelaya, Lorena Vega, Gema Monasterio, Fernando Torrecilla, Carmen Pulido, Paloma Ortega, Guillermo José |
author2_role |
author author author author author author author author author |
dc.subject.none.fl_str_mv |
BRAIN NETWORKS EEG ICU MACHINE LEARNING SEDATION |
topic |
BRAIN NETWORKS EEG ICU MACHINE LEARNING SEDATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.6 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Objective. Sedation of neurocritically ill patients is one of the most challenging situation in ICUs. Quantitative knowledge on the sedation effect on brain activity in that complex scenario could help to uncover new markers for sedation assessment. Hence, we aim to evaluate the existence of changes of diverse EEG-derived measures in deeply-sedated (RASS-Richmond agitation-sedation scale -4 and -5) neurocritically ill patients, and also whether sedation doses are related with those eventual changes. Approach. We performed an observational prospective cohort study in the intensive care unit of the Hospital de la Princesa. Twenty-six adult patients suffered from traumatic brain injury and subarachnoid hemorrhage were included in the present study. Long-term continuous electroencephalographic (EEG) recordings (2141 h) and hourly annotated information were used to determine the relationship between intravenous sedation infusion doses and network and spectral EEG measures. To do that, two different strategies were followed: assessment of the statistical dependence between both variables using the Spearman correlation rank and by performing an automatic classification method based on a machine learning algorithm. Main results. More than 60% of patients presented a correlation greater than 0.5 in at least one of the calculated EEG measures with the sedation dose. The automatic classification method presented an accuracy of 84.3% in discriminating between different sedation doses. In both cases the nodes' degree was the most relevant measurement. Significance. The results presented here provide evidences of brain activity changes during deep sedation linked to sedation doses. Particularly, the capability of network EEG-derived measures in discriminating between different sedation doses could be the framework for the development of accurate methods for sedation levels assessment. Fil: Sanz García, Ancor. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; España Fil: Pérez Romero, Miriam. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; España Fil: Pastor, Jesús. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; España Fil: Sola, Rafael G.. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa. Servicio de Neurocirugia. Grupo de Epilepsia; España Fil: Vega Zelaya, Lorena. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; España Fil: Vega, Gema. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; España Fil: Monasterio, Fernando. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; España Fil: Torrecilla, Carmen. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; España Fil: Pulido, Paloma. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa. Servicio de Neurocirugia. Grupo de Epilepsia; España Fil: Ortega, Guillermo José. Universidad Autonoma de Madrid. Hospital Universitario de la Princesa; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Objective. Sedation of neurocritically ill patients is one of the most challenging situation in ICUs. Quantitative knowledge on the sedation effect on brain activity in that complex scenario could help to uncover new markers for sedation assessment. Hence, we aim to evaluate the existence of changes of diverse EEG-derived measures in deeply-sedated (RASS-Richmond agitation-sedation scale -4 and -5) neurocritically ill patients, and also whether sedation doses are related with those eventual changes. Approach. We performed an observational prospective cohort study in the intensive care unit of the Hospital de la Princesa. Twenty-six adult patients suffered from traumatic brain injury and subarachnoid hemorrhage were included in the present study. Long-term continuous electroencephalographic (EEG) recordings (2141 h) and hourly annotated information were used to determine the relationship between intravenous sedation infusion doses and network and spectral EEG measures. To do that, two different strategies were followed: assessment of the statistical dependence between both variables using the Spearman correlation rank and by performing an automatic classification method based on a machine learning algorithm. Main results. More than 60% of patients presented a correlation greater than 0.5 in at least one of the calculated EEG measures with the sedation dose. The automatic classification method presented an accuracy of 84.3% in discriminating between different sedation doses. In both cases the nodes' degree was the most relevant measurement. Significance. The results presented here provide evidences of brain activity changes during deep sedation linked to sedation doses. Particularly, the capability of network EEG-derived measures in discriminating between different sedation doses could be the framework for the development of accurate methods for sedation levels assessment. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/122820 Sanz García, Ancor; Pérez Romero, Miriam; Pastor, Jesús; Sola, Rafael G.; Vega Zelaya, Lorena; et al.; Potential EEG biomarkers of sedation doses in intensive care patients unveiled by using a machine learning approach; IOP Publishing; Journal of Neural Engineering; 16; 2; 4-2019; 1-11 1741-2560 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/122820 |
identifier_str_mv |
Sanz García, Ancor; Pérez Romero, Miriam; Pastor, Jesús; Sola, Rafael G.; Vega Zelaya, Lorena; et al.; Potential EEG biomarkers of sedation doses in intensive care patients unveiled by using a machine learning approach; IOP Publishing; Journal of Neural Engineering; 16; 2; 4-2019; 1-11 1741-2560 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1741-2552/ab039f/data info:eu-repo/semantics/altIdentifier/doi/10.1088/1741-2552/ab039f |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614461180084224 |
score |
13.070432 |