An arsenic resistant bacteria isolated in Tucumán, Argentina, as a model microorganism for astrobiology studies.
- Autores
- Maizel, Daniela; Ferrero, Marcela Alejandra; Mauas, Pablo Jacobo David
- Año de publicación
- 2015
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Astrobiology can be defined as a multidisciplinary science that focuses on studies about the origin, evolution, distribution and future of life in the Universe (https://astrobiology. nasa.gov/nai/).In the last 20 years, studies of extrasolar planets have progressed considerably, focusing on the search of planets similar to Earth and in the Habitability Zone (HZ), with a major interest in the search of evidence of life in such environments. It is readily evident that our notion of ?habitability? relies on our limited knowledge of life on Earth. Therefore, in an attempt to find possible forms of life in extraterrestrial systems, it becomes fundamental to enlarge our knowledge about extreme life forms inside our own planet. Such forms of life able to tolerate extreme conditions are mostly known as ?extremophiles? (Caviccioli 2002; Das Sarma, 2006). Some of these organisms have been recently proposed as models for astrobiology studies (Abrevaya et al, 2010; 2011).An interesting case of extremophiles is represented by arsenic- resistant bacteria. Arsenic is a toxic metalloid widely spread in nature. It generally occurs as either arsenate [HAsO42- or As(V)] or arsenite [H2AsO3 or As(III)], the latter species being more toxic than the former. It can be released either by natural weathering of rocks or by anthropogenic sources (Muller et al., 2003). Arsenic is toxic because As and P are similar enough that living organisms attempt this substitution (Wolfe-Simon et al, 2009). Although arsenic is toxic to almost every form of life, it has been previously demonstrated that microorganisms can resist it and also utilize arsenic compounds as a source for growth (Krumova et al., 2008). It has been previously suggested that arsenic-based forms of life could be present on Earth within a ?shadow biosphere?, in similar environments to the ones found outside of the Earth (Davies et al, 2009). These alternative forms of life could currently exist in arsenic-rich environments as much as inside Earth itself as in extraterrestrial systems (Cleland & Copley, 2005; Davies et al, 2009). Even though all known life requires phosphorus (P) in the form of inorganic phosphate, In 2010 Wolfe-Simon et al. reported on a bacterial strain isolated from Mono Lake (California, USA) known as GFAJ-1, which is able to survive in high arsenic concentrations and in the absence of phosphorus. The authors of the work suggested GFAJ-1 as a habitability model in other planets, where different forms of life could be based on arsenic (Wolfe-Simon et al, 2011).Brevibacterium linens AE038-8, is a bacterial strain isolated from As-contaminated groundwater in Tucumán (Argentina), highly resistant to arsenic compounds and capable of growing in extremely low phosphate concentrations, showing a physiology comparable to that of GFAJ-1. It?s recently sequenced genome (Maizel et al, 2015) revealed the presence of arsenate reductase enzymes previously described, which might have evolved from arsenic-rich environments in early life on Earth (Wolfe-Simon et al, 2009). Therefore, we propose strain AE038-8 as an interesting prospect for studies of life in extrasolar planets.
Fil: Maizel, Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina
Fil: Ferrero, Marcela Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina
Fil: Mauas, Pablo Jacobo David. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
58a Reunión Anual de la Asociación Argentina de Astronomía
La Plata
Argentina
Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas
Universidad Nacional de La Plata. Instituto de Astrofíısica de La Plata - Materia
-
ASTROBIOLOGÍA
ARSENICO
RESISTENCIA
BREVIBACTERIUM - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/195148
Ver los metadatos del registro completo
id |
CONICETDig_4dc4b8aa221ada277cd9e2bd424539fb |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/195148 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
An arsenic resistant bacteria isolated in Tucumán, Argentina, as a model microorganism for astrobiology studies.Maizel, DanielaFerrero, Marcela AlejandraMauas, Pablo Jacobo DavidASTROBIOLOGÍAARSENICORESISTENCIABREVIBACTERIUMhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Astrobiology can be defined as a multidisciplinary science that focuses on studies about the origin, evolution, distribution and future of life in the Universe (https://astrobiology. nasa.gov/nai/).In the last 20 years, studies of extrasolar planets have progressed considerably, focusing on the search of planets similar to Earth and in the Habitability Zone (HZ), with a major interest in the search of evidence of life in such environments. It is readily evident that our notion of ?habitability? relies on our limited knowledge of life on Earth. Therefore, in an attempt to find possible forms of life in extraterrestrial systems, it becomes fundamental to enlarge our knowledge about extreme life forms inside our own planet. Such forms of life able to tolerate extreme conditions are mostly known as ?extremophiles? (Caviccioli 2002; Das Sarma, 2006). Some of these organisms have been recently proposed as models for astrobiology studies (Abrevaya et al, 2010; 2011).An interesting case of extremophiles is represented by arsenic- resistant bacteria. Arsenic is a toxic metalloid widely spread in nature. It generally occurs as either arsenate [HAsO42- or As(V)] or arsenite [H2AsO3 or As(III)], the latter species being more toxic than the former. It can be released either by natural weathering of rocks or by anthropogenic sources (Muller et al., 2003). Arsenic is toxic because As and P are similar enough that living organisms attempt this substitution (Wolfe-Simon et al, 2009). Although arsenic is toxic to almost every form of life, it has been previously demonstrated that microorganisms can resist it and also utilize arsenic compounds as a source for growth (Krumova et al., 2008). It has been previously suggested that arsenic-based forms of life could be present on Earth within a ?shadow biosphere?, in similar environments to the ones found outside of the Earth (Davies et al, 2009). These alternative forms of life could currently exist in arsenic-rich environments as much as inside Earth itself as in extraterrestrial systems (Cleland & Copley, 2005; Davies et al, 2009). Even though all known life requires phosphorus (P) in the form of inorganic phosphate, In 2010 Wolfe-Simon et al. reported on a bacterial strain isolated from Mono Lake (California, USA) known as GFAJ-1, which is able to survive in high arsenic concentrations and in the absence of phosphorus. The authors of the work suggested GFAJ-1 as a habitability model in other planets, where different forms of life could be based on arsenic (Wolfe-Simon et al, 2011).Brevibacterium linens AE038-8, is a bacterial strain isolated from As-contaminated groundwater in Tucumán (Argentina), highly resistant to arsenic compounds and capable of growing in extremely low phosphate concentrations, showing a physiology comparable to that of GFAJ-1. It?s recently sequenced genome (Maizel et al, 2015) revealed the presence of arsenate reductase enzymes previously described, which might have evolved from arsenic-rich environments in early life on Earth (Wolfe-Simon et al, 2009). Therefore, we propose strain AE038-8 as an interesting prospect for studies of life in extrasolar planets.Fil: Maizel, Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Ferrero, Marcela Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Mauas, Pablo Jacobo David. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina58a Reunión Anual de la Asociación Argentina de AstronomíaLa PlataArgentinaUniversidad Nacional de La Plata. Facultad de Ciencias Astronómicas y GeofísicasUniversidad Nacional de La Plata. Instituto de Astrofíısica de La PlataUniversidad Nacional de La Plata2015info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectReuniónBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/195148An arsenic resistant bacteria isolated in Tucumán, Argentina, as a model microorganism for astrobiology studies.; 58a Reunión Anual de la Asociación Argentina de Astronomía; La Plata; Argentina; 2015; 1-3CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/http://aaa2015.fcaglp.unlp.edu.ar/Archivos/LibroResumenes.pdfNacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:35:20Zoai:ri.conicet.gov.ar:11336/195148instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:35:20.945CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
An arsenic resistant bacteria isolated in Tucumán, Argentina, as a model microorganism for astrobiology studies. |
title |
An arsenic resistant bacteria isolated in Tucumán, Argentina, as a model microorganism for astrobiology studies. |
spellingShingle |
An arsenic resistant bacteria isolated in Tucumán, Argentina, as a model microorganism for astrobiology studies. Maizel, Daniela ASTROBIOLOGÍA ARSENICO RESISTENCIA BREVIBACTERIUM |
title_short |
An arsenic resistant bacteria isolated in Tucumán, Argentina, as a model microorganism for astrobiology studies. |
title_full |
An arsenic resistant bacteria isolated in Tucumán, Argentina, as a model microorganism for astrobiology studies. |
title_fullStr |
An arsenic resistant bacteria isolated in Tucumán, Argentina, as a model microorganism for astrobiology studies. |
title_full_unstemmed |
An arsenic resistant bacteria isolated in Tucumán, Argentina, as a model microorganism for astrobiology studies. |
title_sort |
An arsenic resistant bacteria isolated in Tucumán, Argentina, as a model microorganism for astrobiology studies. |
dc.creator.none.fl_str_mv |
Maizel, Daniela Ferrero, Marcela Alejandra Mauas, Pablo Jacobo David |
author |
Maizel, Daniela |
author_facet |
Maizel, Daniela Ferrero, Marcela Alejandra Mauas, Pablo Jacobo David |
author_role |
author |
author2 |
Ferrero, Marcela Alejandra Mauas, Pablo Jacobo David |
author2_role |
author author |
dc.subject.none.fl_str_mv |
ASTROBIOLOGÍA ARSENICO RESISTENCIA BREVIBACTERIUM |
topic |
ASTROBIOLOGÍA ARSENICO RESISTENCIA BREVIBACTERIUM |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Astrobiology can be defined as a multidisciplinary science that focuses on studies about the origin, evolution, distribution and future of life in the Universe (https://astrobiology. nasa.gov/nai/).In the last 20 years, studies of extrasolar planets have progressed considerably, focusing on the search of planets similar to Earth and in the Habitability Zone (HZ), with a major interest in the search of evidence of life in such environments. It is readily evident that our notion of ?habitability? relies on our limited knowledge of life on Earth. Therefore, in an attempt to find possible forms of life in extraterrestrial systems, it becomes fundamental to enlarge our knowledge about extreme life forms inside our own planet. Such forms of life able to tolerate extreme conditions are mostly known as ?extremophiles? (Caviccioli 2002; Das Sarma, 2006). Some of these organisms have been recently proposed as models for astrobiology studies (Abrevaya et al, 2010; 2011).An interesting case of extremophiles is represented by arsenic- resistant bacteria. Arsenic is a toxic metalloid widely spread in nature. It generally occurs as either arsenate [HAsO42- or As(V)] or arsenite [H2AsO3 or As(III)], the latter species being more toxic than the former. It can be released either by natural weathering of rocks or by anthropogenic sources (Muller et al., 2003). Arsenic is toxic because As and P are similar enough that living organisms attempt this substitution (Wolfe-Simon et al, 2009). Although arsenic is toxic to almost every form of life, it has been previously demonstrated that microorganisms can resist it and also utilize arsenic compounds as a source for growth (Krumova et al., 2008). It has been previously suggested that arsenic-based forms of life could be present on Earth within a ?shadow biosphere?, in similar environments to the ones found outside of the Earth (Davies et al, 2009). These alternative forms of life could currently exist in arsenic-rich environments as much as inside Earth itself as in extraterrestrial systems (Cleland & Copley, 2005; Davies et al, 2009). Even though all known life requires phosphorus (P) in the form of inorganic phosphate, In 2010 Wolfe-Simon et al. reported on a bacterial strain isolated from Mono Lake (California, USA) known as GFAJ-1, which is able to survive in high arsenic concentrations and in the absence of phosphorus. The authors of the work suggested GFAJ-1 as a habitability model in other planets, where different forms of life could be based on arsenic (Wolfe-Simon et al, 2011).Brevibacterium linens AE038-8, is a bacterial strain isolated from As-contaminated groundwater in Tucumán (Argentina), highly resistant to arsenic compounds and capable of growing in extremely low phosphate concentrations, showing a physiology comparable to that of GFAJ-1. It?s recently sequenced genome (Maizel et al, 2015) revealed the presence of arsenate reductase enzymes previously described, which might have evolved from arsenic-rich environments in early life on Earth (Wolfe-Simon et al, 2009). Therefore, we propose strain AE038-8 as an interesting prospect for studies of life in extrasolar planets. Fil: Maizel, Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina Fil: Ferrero, Marcela Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina Fil: Mauas, Pablo Jacobo David. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina 58a Reunión Anual de la Asociación Argentina de Astronomía La Plata Argentina Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas Universidad Nacional de La Plata. Instituto de Astrofíısica de La Plata |
description |
Astrobiology can be defined as a multidisciplinary science that focuses on studies about the origin, evolution, distribution and future of life in the Universe (https://astrobiology. nasa.gov/nai/).In the last 20 years, studies of extrasolar planets have progressed considerably, focusing on the search of planets similar to Earth and in the Habitability Zone (HZ), with a major interest in the search of evidence of life in such environments. It is readily evident that our notion of ?habitability? relies on our limited knowledge of life on Earth. Therefore, in an attempt to find possible forms of life in extraterrestrial systems, it becomes fundamental to enlarge our knowledge about extreme life forms inside our own planet. Such forms of life able to tolerate extreme conditions are mostly known as ?extremophiles? (Caviccioli 2002; Das Sarma, 2006). Some of these organisms have been recently proposed as models for astrobiology studies (Abrevaya et al, 2010; 2011).An interesting case of extremophiles is represented by arsenic- resistant bacteria. Arsenic is a toxic metalloid widely spread in nature. It generally occurs as either arsenate [HAsO42- or As(V)] or arsenite [H2AsO3 or As(III)], the latter species being more toxic than the former. It can be released either by natural weathering of rocks or by anthropogenic sources (Muller et al., 2003). Arsenic is toxic because As and P are similar enough that living organisms attempt this substitution (Wolfe-Simon et al, 2009). Although arsenic is toxic to almost every form of life, it has been previously demonstrated that microorganisms can resist it and also utilize arsenic compounds as a source for growth (Krumova et al., 2008). It has been previously suggested that arsenic-based forms of life could be present on Earth within a ?shadow biosphere?, in similar environments to the ones found outside of the Earth (Davies et al, 2009). These alternative forms of life could currently exist in arsenic-rich environments as much as inside Earth itself as in extraterrestrial systems (Cleland & Copley, 2005; Davies et al, 2009). Even though all known life requires phosphorus (P) in the form of inorganic phosphate, In 2010 Wolfe-Simon et al. reported on a bacterial strain isolated from Mono Lake (California, USA) known as GFAJ-1, which is able to survive in high arsenic concentrations and in the absence of phosphorus. The authors of the work suggested GFAJ-1 as a habitability model in other planets, where different forms of life could be based on arsenic (Wolfe-Simon et al, 2011).Brevibacterium linens AE038-8, is a bacterial strain isolated from As-contaminated groundwater in Tucumán (Argentina), highly resistant to arsenic compounds and capable of growing in extremely low phosphate concentrations, showing a physiology comparable to that of GFAJ-1. It?s recently sequenced genome (Maizel et al, 2015) revealed the presence of arsenate reductase enzymes previously described, which might have evolved from arsenic-rich environments in early life on Earth (Wolfe-Simon et al, 2009). Therefore, we propose strain AE038-8 as an interesting prospect for studies of life in extrasolar planets. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Reunión Book http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
status_str |
publishedVersion |
format |
conferenceObject |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/195148 An arsenic resistant bacteria isolated in Tucumán, Argentina, as a model microorganism for astrobiology studies.; 58a Reunión Anual de la Asociación Argentina de Astronomía; La Plata; Argentina; 2015; 1-3 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/195148 |
identifier_str_mv |
An arsenic resistant bacteria isolated in Tucumán, Argentina, as a model microorganism for astrobiology studies.; 58a Reunión Anual de la Asociación Argentina de Astronomía; La Plata; Argentina; 2015; 1-3 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://aaa2015.fcaglp.unlp.edu.ar/Archivos/LibroResumenes.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.coverage.none.fl_str_mv |
Nacional |
dc.publisher.none.fl_str_mv |
Universidad Nacional de La Plata |
publisher.none.fl_str_mv |
Universidad Nacional de La Plata |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613099974295552 |
score |
13.070432 |