On a conjecture by Mbekhta about best approximation by polar factors

Autores
Chiumiento, Eduardo Hernan
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The polar factor of a bounded operator acting on a Hilbert space is the unique partial isometry arising in the polar decomposition. It is well known that the polar factor might not be a best approximant to its associated operator in the set of all partial isometries, when the distance is measured in the operator norm. We show that the polar factor of an arbitrary operator T is a best approximant to T in the set of all partial isometries X such that dim(ker(X)∩ker(T)⊥) ≤ dim(ker(X)⊥∩ker(T)). We also provide a characterization of best approximations. This work is motivated by a recent conjecture by M. Mbekhta, which can be answered using our results.
Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Materia
BEST APPROXIMATION
INDEX
PAIR OF PROJECTIONS
PARTIAL ISOMETRIES
POLAR DECOMPOSITION
POLAR FACTOR
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/150989

id CONICETDig_4dc4202f5915de43d1bad55445d40680
oai_identifier_str oai:ri.conicet.gov.ar:11336/150989
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On a conjecture by Mbekhta about best approximation by polar factorsChiumiento, Eduardo HernanBEST APPROXIMATIONINDEXPAIR OF PROJECTIONSPARTIAL ISOMETRIESPOLAR DECOMPOSITIONPOLAR FACTORhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The polar factor of a bounded operator acting on a Hilbert space is the unique partial isometry arising in the polar decomposition. It is well known that the polar factor might not be a best approximant to its associated operator in the set of all partial isometries, when the distance is measured in the operator norm. We show that the polar factor of an arbitrary operator T is a best approximant to T in the set of all partial isometries X such that dim(ker(X)∩ker(T)⊥) ≤ dim(ker(X)⊥∩ker(T)). We also provide a characterization of best approximations. This work is motivated by a recent conjecture by M. Mbekhta, which can be answered using our results.Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaAmerican Mathematical Society2021-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/150989Chiumiento, Eduardo Hernan; On a conjecture by Mbekhta about best approximation by polar factors; American Mathematical Society; Proceedings of the American Mathematical Society; 149; 9; 11-2021; 3913-39220002-99391088-6826CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/proc/2021-149-09/S0002-9939-2021-15537-8/info:eu-repo/semantics/altIdentifier/doi/10.1090/proc/15537info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2106.01825info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:28:30Zoai:ri.conicet.gov.ar:11336/150989instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:28:31.176CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On a conjecture by Mbekhta about best approximation by polar factors
title On a conjecture by Mbekhta about best approximation by polar factors
spellingShingle On a conjecture by Mbekhta about best approximation by polar factors
Chiumiento, Eduardo Hernan
BEST APPROXIMATION
INDEX
PAIR OF PROJECTIONS
PARTIAL ISOMETRIES
POLAR DECOMPOSITION
POLAR FACTOR
title_short On a conjecture by Mbekhta about best approximation by polar factors
title_full On a conjecture by Mbekhta about best approximation by polar factors
title_fullStr On a conjecture by Mbekhta about best approximation by polar factors
title_full_unstemmed On a conjecture by Mbekhta about best approximation by polar factors
title_sort On a conjecture by Mbekhta about best approximation by polar factors
dc.creator.none.fl_str_mv Chiumiento, Eduardo Hernan
author Chiumiento, Eduardo Hernan
author_facet Chiumiento, Eduardo Hernan
author_role author
dc.subject.none.fl_str_mv BEST APPROXIMATION
INDEX
PAIR OF PROJECTIONS
PARTIAL ISOMETRIES
POLAR DECOMPOSITION
POLAR FACTOR
topic BEST APPROXIMATION
INDEX
PAIR OF PROJECTIONS
PARTIAL ISOMETRIES
POLAR DECOMPOSITION
POLAR FACTOR
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The polar factor of a bounded operator acting on a Hilbert space is the unique partial isometry arising in the polar decomposition. It is well known that the polar factor might not be a best approximant to its associated operator in the set of all partial isometries, when the distance is measured in the operator norm. We show that the polar factor of an arbitrary operator T is a best approximant to T in the set of all partial isometries X such that dim(ker(X)∩ker(T)⊥) ≤ dim(ker(X)⊥∩ker(T)). We also provide a characterization of best approximations. This work is motivated by a recent conjecture by M. Mbekhta, which can be answered using our results.
Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
description The polar factor of a bounded operator acting on a Hilbert space is the unique partial isometry arising in the polar decomposition. It is well known that the polar factor might not be a best approximant to its associated operator in the set of all partial isometries, when the distance is measured in the operator norm. We show that the polar factor of an arbitrary operator T is a best approximant to T in the set of all partial isometries X such that dim(ker(X)∩ker(T)⊥) ≤ dim(ker(X)⊥∩ker(T)). We also provide a characterization of best approximations. This work is motivated by a recent conjecture by M. Mbekhta, which can be answered using our results.
publishDate 2021
dc.date.none.fl_str_mv 2021-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/150989
Chiumiento, Eduardo Hernan; On a conjecture by Mbekhta about best approximation by polar factors; American Mathematical Society; Proceedings of the American Mathematical Society; 149; 9; 11-2021; 3913-3922
0002-9939
1088-6826
CONICET Digital
CONICET
url http://hdl.handle.net/11336/150989
identifier_str_mv Chiumiento, Eduardo Hernan; On a conjecture by Mbekhta about best approximation by polar factors; American Mathematical Society; Proceedings of the American Mathematical Society; 149; 9; 11-2021; 3913-3922
0002-9939
1088-6826
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/proc/2021-149-09/S0002-9939-2021-15537-8/
info:eu-repo/semantics/altIdentifier/doi/10.1090/proc/15537
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2106.01825
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Mathematical Society
publisher.none.fl_str_mv American Mathematical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614289082548224
score 13.069144