Spectral Graph Analysis for Process Monitoring
- Autores
- Musulin, Estanislao
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Process monitoring is a fundamental task to support operator decisions under ab- normal situations. Most process monitoring approaches, such as Principal Components Analysis and Locality Preserving Projections, are based on dimensionality reduction. In this paper Spectral Graph Analysis Monitoring (SGAM) is introduced. SGAM is a new process monitoring technique that does not require dimensionality reduction techniques. The approach it is based on the spectral graph analysis theory. Firstly, a weighted graph representation of process measurements is developed. Secondly, the process behavior is parameterized by means of graph spectral features, in particular the graph algebraic connectivity and the graph spectral energy. The developed methodology has been illustrated in autocorrelated and non-linear synthetic cases, and applied to the well known Tennessee Eastman process benchmark with promising results.
Fil: Musulin, Estanislao. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina - Materia
-
PROCESS MONITORING
SPECTRAL GRAPH ANALYSIS
DATA DRIVEN - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/4808
Ver los metadatos del registro completo
id |
CONICETDig_4c23d6b91be745c998556ba1fe1e5fe3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/4808 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Spectral Graph Analysis for Process MonitoringMusulin, EstanislaoPROCESS MONITORINGSPECTRAL GRAPH ANALYSISDATA DRIVENhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Process monitoring is a fundamental task to support operator decisions under ab- normal situations. Most process monitoring approaches, such as Principal Components Analysis and Locality Preserving Projections, are based on dimensionality reduction. In this paper Spectral Graph Analysis Monitoring (SGAM) is introduced. SGAM is a new process monitoring technique that does not require dimensionality reduction techniques. The approach it is based on the spectral graph analysis theory. Firstly, a weighted graph representation of process measurements is developed. Secondly, the process behavior is parameterized by means of graph spectral features, in particular the graph algebraic connectivity and the graph spectral energy. The developed methodology has been illustrated in autocorrelated and non-linear synthetic cases, and applied to the well known Tennessee Eastman process benchmark with promising results.Fil: Musulin, Estanislao. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; ArgentinaAmerican Chemical Society2014-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfhttp://hdl.handle.net/11336/4808Musulin, Estanislao; Spectral Graph Analysis for Process Monitoring; American Chemical Society; Industrial & Engineering Chemical Research; 53; 25; 5-2014; 10404-104160888-5885enginfo:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/ie403966vinfo:eu-repo/semantics/altIdentifier/doi/10.1021/ie403966vinfo:eu-repo/semantics/altIdentifier/issn/0888-5885info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:56:52Zoai:ri.conicet.gov.ar:11336/4808instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:56:53.216CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Spectral Graph Analysis for Process Monitoring |
title |
Spectral Graph Analysis for Process Monitoring |
spellingShingle |
Spectral Graph Analysis for Process Monitoring Musulin, Estanislao PROCESS MONITORING SPECTRAL GRAPH ANALYSIS DATA DRIVEN |
title_short |
Spectral Graph Analysis for Process Monitoring |
title_full |
Spectral Graph Analysis for Process Monitoring |
title_fullStr |
Spectral Graph Analysis for Process Monitoring |
title_full_unstemmed |
Spectral Graph Analysis for Process Monitoring |
title_sort |
Spectral Graph Analysis for Process Monitoring |
dc.creator.none.fl_str_mv |
Musulin, Estanislao |
author |
Musulin, Estanislao |
author_facet |
Musulin, Estanislao |
author_role |
author |
dc.subject.none.fl_str_mv |
PROCESS MONITORING SPECTRAL GRAPH ANALYSIS DATA DRIVEN |
topic |
PROCESS MONITORING SPECTRAL GRAPH ANALYSIS DATA DRIVEN |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Process monitoring is a fundamental task to support operator decisions under ab- normal situations. Most process monitoring approaches, such as Principal Components Analysis and Locality Preserving Projections, are based on dimensionality reduction. In this paper Spectral Graph Analysis Monitoring (SGAM) is introduced. SGAM is a new process monitoring technique that does not require dimensionality reduction techniques. The approach it is based on the spectral graph analysis theory. Firstly, a weighted graph representation of process measurements is developed. Secondly, the process behavior is parameterized by means of graph spectral features, in particular the graph algebraic connectivity and the graph spectral energy. The developed methodology has been illustrated in autocorrelated and non-linear synthetic cases, and applied to the well known Tennessee Eastman process benchmark with promising results. Fil: Musulin, Estanislao. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina |
description |
Process monitoring is a fundamental task to support operator decisions under ab- normal situations. Most process monitoring approaches, such as Principal Components Analysis and Locality Preserving Projections, are based on dimensionality reduction. In this paper Spectral Graph Analysis Monitoring (SGAM) is introduced. SGAM is a new process monitoring technique that does not require dimensionality reduction techniques. The approach it is based on the spectral graph analysis theory. Firstly, a weighted graph representation of process measurements is developed. Secondly, the process behavior is parameterized by means of graph spectral features, in particular the graph algebraic connectivity and the graph spectral energy. The developed methodology has been illustrated in autocorrelated and non-linear synthetic cases, and applied to the well known Tennessee Eastman process benchmark with promising results. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/4808 Musulin, Estanislao; Spectral Graph Analysis for Process Monitoring; American Chemical Society; Industrial & Engineering Chemical Research; 53; 25; 5-2014; 10404-10416 0888-5885 |
url |
http://hdl.handle.net/11336/4808 |
identifier_str_mv |
Musulin, Estanislao; Spectral Graph Analysis for Process Monitoring; American Chemical Society; Industrial & Engineering Chemical Research; 53; 25; 5-2014; 10404-10416 0888-5885 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/ie403966v info:eu-repo/semantics/altIdentifier/doi/10.1021/ie403966v info:eu-repo/semantics/altIdentifier/issn/0888-5885 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/zip application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613705241722880 |
score |
13.070432 |