Spectral Graph Analysis for Process Monitoring

Autores
Musulin, Estanislao
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Process monitoring is a fundamental task to support operator decisions under ab- normal situations. Most process monitoring approaches, such as Principal Components Analysis and Locality Preserving Projections, are based on dimensionality reduction. In this paper Spectral Graph Analysis Monitoring (SGAM) is introduced. SGAM is a new process monitoring technique that does not require dimensionality reduction techniques. The approach it is based on the spectral graph analysis theory. Firstly, a weighted graph representation of process measurements is developed. Secondly, the process behavior is parameterized by means of graph spectral features, in particular the graph algebraic connectivity and the graph spectral energy. The developed methodology has been illustrated in autocorrelated and non-linear synthetic cases, and applied to the well known Tennessee Eastman process benchmark with promising results.
Fil: Musulin, Estanislao. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina
Materia
PROCESS MONITORING
SPECTRAL GRAPH ANALYSIS
DATA DRIVEN
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/4808

id CONICETDig_4c23d6b91be745c998556ba1fe1e5fe3
oai_identifier_str oai:ri.conicet.gov.ar:11336/4808
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Spectral Graph Analysis for Process MonitoringMusulin, EstanislaoPROCESS MONITORINGSPECTRAL GRAPH ANALYSISDATA DRIVENhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Process monitoring is a fundamental task to support operator decisions under ab- normal situations. Most process monitoring approaches, such as Principal Components Analysis and Locality Preserving Projections, are based on dimensionality reduction. In this paper Spectral Graph Analysis Monitoring (SGAM) is introduced. SGAM is a new process monitoring technique that does not require dimensionality reduction techniques. The approach it is based on the spectral graph analysis theory. Firstly, a weighted graph representation of process measurements is developed. Secondly, the process behavior is parameterized by means of graph spectral features, in particular the graph algebraic connectivity and the graph spectral energy. The developed methodology has been illustrated in autocorrelated and non-linear synthetic cases, and applied to the well known Tennessee Eastman process benchmark with promising results.Fil: Musulin, Estanislao. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; ArgentinaAmerican Chemical Society2014-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfhttp://hdl.handle.net/11336/4808Musulin, Estanislao; Spectral Graph Analysis for Process Monitoring; American Chemical Society; Industrial & Engineering Chemical Research; 53; 25; 5-2014; 10404-104160888-5885enginfo:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/ie403966vinfo:eu-repo/semantics/altIdentifier/doi/10.1021/ie403966vinfo:eu-repo/semantics/altIdentifier/issn/0888-5885info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:56:52Zoai:ri.conicet.gov.ar:11336/4808instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:56:53.216CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Spectral Graph Analysis for Process Monitoring
title Spectral Graph Analysis for Process Monitoring
spellingShingle Spectral Graph Analysis for Process Monitoring
Musulin, Estanislao
PROCESS MONITORING
SPECTRAL GRAPH ANALYSIS
DATA DRIVEN
title_short Spectral Graph Analysis for Process Monitoring
title_full Spectral Graph Analysis for Process Monitoring
title_fullStr Spectral Graph Analysis for Process Monitoring
title_full_unstemmed Spectral Graph Analysis for Process Monitoring
title_sort Spectral Graph Analysis for Process Monitoring
dc.creator.none.fl_str_mv Musulin, Estanislao
author Musulin, Estanislao
author_facet Musulin, Estanislao
author_role author
dc.subject.none.fl_str_mv PROCESS MONITORING
SPECTRAL GRAPH ANALYSIS
DATA DRIVEN
topic PROCESS MONITORING
SPECTRAL GRAPH ANALYSIS
DATA DRIVEN
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Process monitoring is a fundamental task to support operator decisions under ab- normal situations. Most process monitoring approaches, such as Principal Components Analysis and Locality Preserving Projections, are based on dimensionality reduction. In this paper Spectral Graph Analysis Monitoring (SGAM) is introduced. SGAM is a new process monitoring technique that does not require dimensionality reduction techniques. The approach it is based on the spectral graph analysis theory. Firstly, a weighted graph representation of process measurements is developed. Secondly, the process behavior is parameterized by means of graph spectral features, in particular the graph algebraic connectivity and the graph spectral energy. The developed methodology has been illustrated in autocorrelated and non-linear synthetic cases, and applied to the well known Tennessee Eastman process benchmark with promising results.
Fil: Musulin, Estanislao. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina
description Process monitoring is a fundamental task to support operator decisions under ab- normal situations. Most process monitoring approaches, such as Principal Components Analysis and Locality Preserving Projections, are based on dimensionality reduction. In this paper Spectral Graph Analysis Monitoring (SGAM) is introduced. SGAM is a new process monitoring technique that does not require dimensionality reduction techniques. The approach it is based on the spectral graph analysis theory. Firstly, a weighted graph representation of process measurements is developed. Secondly, the process behavior is parameterized by means of graph spectral features, in particular the graph algebraic connectivity and the graph spectral energy. The developed methodology has been illustrated in autocorrelated and non-linear synthetic cases, and applied to the well known Tennessee Eastman process benchmark with promising results.
publishDate 2014
dc.date.none.fl_str_mv 2014-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/4808
Musulin, Estanislao; Spectral Graph Analysis for Process Monitoring; American Chemical Society; Industrial & Engineering Chemical Research; 53; 25; 5-2014; 10404-10416
0888-5885
url http://hdl.handle.net/11336/4808
identifier_str_mv Musulin, Estanislao; Spectral Graph Analysis for Process Monitoring; American Chemical Society; Industrial & Engineering Chemical Research; 53; 25; 5-2014; 10404-10416
0888-5885
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/ie403966v
info:eu-repo/semantics/altIdentifier/doi/10.1021/ie403966v
info:eu-repo/semantics/altIdentifier/issn/0888-5885
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/zip
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613705241722880
score 13.070432