An artificial intelligence planning approach to manufacturing feature recognition
- Autores
- Marchetta Fernandez, Martin Gonzalo; Forradellas, Raymundo Quilez
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Within manufacturing, features have been widely accepted as useful concepts, and in particular they are used as an interface between CAD and CAPP systems. Previous research on feature recognition focus on the issues of intersecting features and multiple interpretations, but do not address the problem of custom features representation. Representation of features is an important aspect for making feature recognition more applicable in practice. In this paper a hybrid procedural and knowledge-based approach based on artificial intelligence planning is presented, which addresses both classic feature interpretation and also feature representation problems. STEP designs are presented as case studies in order to demonstrate the effectiveness of the model.
Fil: Marchetta Fernandez, Martin Gonzalo. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Forradellas, Raymundo Quilez. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina - Materia
-
Feature recognition
Process planning
AI-Planning
PLM - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/242322
Ver los metadatos del registro completo
id |
CONICETDig_4c22a54916fb888017355d296c267adb |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/242322 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
An artificial intelligence planning approach to manufacturing feature recognitionMarchetta Fernandez, Martin GonzaloForradellas, Raymundo QuilezFeature recognitionProcess planningAI-PlanningPLMhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Within manufacturing, features have been widely accepted as useful concepts, and in particular they are used as an interface between CAD and CAPP systems. Previous research on feature recognition focus on the issues of intersecting features and multiple interpretations, but do not address the problem of custom features representation. Representation of features is an important aspect for making feature recognition more applicable in practice. In this paper a hybrid procedural and knowledge-based approach based on artificial intelligence planning is presented, which addresses both classic feature interpretation and also feature representation problems. STEP designs are presented as case studies in order to demonstrate the effectiveness of the model.Fil: Marchetta Fernandez, Martin Gonzalo. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Forradellas, Raymundo Quilez. Universidad Nacional de Cuyo. Facultad de Ingeniería; ArgentinaElsevier2010-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/242322Marchetta Fernandez, Martin Gonzalo; Forradellas, Raymundo Quilez; An artificial intelligence planning approach to manufacturing feature recognition; Elsevier; Computer-aided Design; 42; 3; 3-2010; 248-2560010-4485CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.cad.2009.11.007info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:44Zoai:ri.conicet.gov.ar:11336/242322instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:44.337CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
An artificial intelligence planning approach to manufacturing feature recognition |
title |
An artificial intelligence planning approach to manufacturing feature recognition |
spellingShingle |
An artificial intelligence planning approach to manufacturing feature recognition Marchetta Fernandez, Martin Gonzalo Feature recognition Process planning AI-Planning PLM |
title_short |
An artificial intelligence planning approach to manufacturing feature recognition |
title_full |
An artificial intelligence planning approach to manufacturing feature recognition |
title_fullStr |
An artificial intelligence planning approach to manufacturing feature recognition |
title_full_unstemmed |
An artificial intelligence planning approach to manufacturing feature recognition |
title_sort |
An artificial intelligence planning approach to manufacturing feature recognition |
dc.creator.none.fl_str_mv |
Marchetta Fernandez, Martin Gonzalo Forradellas, Raymundo Quilez |
author |
Marchetta Fernandez, Martin Gonzalo |
author_facet |
Marchetta Fernandez, Martin Gonzalo Forradellas, Raymundo Quilez |
author_role |
author |
author2 |
Forradellas, Raymundo Quilez |
author2_role |
author |
dc.subject.none.fl_str_mv |
Feature recognition Process planning AI-Planning PLM |
topic |
Feature recognition Process planning AI-Planning PLM |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Within manufacturing, features have been widely accepted as useful concepts, and in particular they are used as an interface between CAD and CAPP systems. Previous research on feature recognition focus on the issues of intersecting features and multiple interpretations, but do not address the problem of custom features representation. Representation of features is an important aspect for making feature recognition more applicable in practice. In this paper a hybrid procedural and knowledge-based approach based on artificial intelligence planning is presented, which addresses both classic feature interpretation and also feature representation problems. STEP designs are presented as case studies in order to demonstrate the effectiveness of the model. Fil: Marchetta Fernandez, Martin Gonzalo. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina Fil: Forradellas, Raymundo Quilez. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina |
description |
Within manufacturing, features have been widely accepted as useful concepts, and in particular they are used as an interface between CAD and CAPP systems. Previous research on feature recognition focus on the issues of intersecting features and multiple interpretations, but do not address the problem of custom features representation. Representation of features is an important aspect for making feature recognition more applicable in practice. In this paper a hybrid procedural and knowledge-based approach based on artificial intelligence planning is presented, which addresses both classic feature interpretation and also feature representation problems. STEP designs are presented as case studies in order to demonstrate the effectiveness of the model. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/242322 Marchetta Fernandez, Martin Gonzalo; Forradellas, Raymundo Quilez; An artificial intelligence planning approach to manufacturing feature recognition; Elsevier; Computer-aided Design; 42; 3; 3-2010; 248-256 0010-4485 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/242322 |
identifier_str_mv |
Marchetta Fernandez, Martin Gonzalo; Forradellas, Raymundo Quilez; An artificial intelligence planning approach to manufacturing feature recognition; Elsevier; Computer-aided Design; 42; 3; 3-2010; 248-256 0010-4485 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cad.2009.11.007 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613038715437056 |
score |
13.070432 |