Simulation of spatially correlated clutter fields
- Autores
- Bustos, Oscar Humberto; Flesia, Ana Georgina; Frery, Alejandro César; Lucini, María Magdalena
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Correlated G distributions can be used to describe the clutter seen in images obtained with coherent illumination, as is the case of B-scan ultrasound, laser, sonar, and synthetic aperture radar (SAR) imagery. These distributions are derived using the square root of the generalized inverse Gaussian distribution for the amplitude backscatter within the multiplicative model. A two-parameter particular case of the amplitude G distribution, called, constitutes a modeling improvement with respect to the widespread KA distribution when fitting urban, forested, and deforested areas in remote sensing data. This article deals with the modeling and the simulation of correlated-distributed random fields. It is accomplished by means of the Inverse Transform method, applied to Gaussian random fields with spatial correlation. The main feature of this approach is its generality, since it allows the introduction of negative correlation values in the resulting process, necessary for the proper explanation of the shadowing effect in many SAR images. © 2009 Taylor & Francis Group, LLC.
Fil: Bustos, Oscar Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Flesia, Ana Georgina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Frery, Alejandro César. Universidade Federal de Alagoas; Brasil
Fil: Lucini, María Magdalena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina - Materia
-
Image Modeling
Simulation
Spatial Correlation
Speckle - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/61272
Ver los metadatos del registro completo
id |
CONICETDig_4bc3c41c572c7f958ccbdcb4feb94d6a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/61272 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Simulation of spatially correlated clutter fieldsBustos, Oscar HumbertoFlesia, Ana GeorginaFrery, Alejandro CésarLucini, María MagdalenaImage ModelingSimulationSpatial CorrelationSpecklehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Correlated G distributions can be used to describe the clutter seen in images obtained with coherent illumination, as is the case of B-scan ultrasound, laser, sonar, and synthetic aperture radar (SAR) imagery. These distributions are derived using the square root of the generalized inverse Gaussian distribution for the amplitude backscatter within the multiplicative model. A two-parameter particular case of the amplitude G distribution, called, constitutes a modeling improvement with respect to the widespread KA distribution when fitting urban, forested, and deforested areas in remote sensing data. This article deals with the modeling and the simulation of correlated-distributed random fields. It is accomplished by means of the Inverse Transform method, applied to Gaussian random fields with spatial correlation. The main feature of this approach is its generality, since it allows the introduction of negative correlation values in the resulting process, necessary for the proper explanation of the shadowing effect in many SAR images. © 2009 Taylor & Francis Group, LLC.Fil: Bustos, Oscar Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Flesia, Ana Georgina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Frery, Alejandro César. Universidade Federal de Alagoas; BrasilFil: Lucini, María Magdalena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; ArgentinaTaylor2009-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/61272Bustos, Oscar Humberto; Flesia, Ana Georgina; Frery, Alejandro César; Lucini, María Magdalena; Simulation of spatially correlated clutter fields; Taylor ; Communications In Statistics-simulation And Computation; 38; 10; 11-2009; 2134-21510361-0918CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1080/03610910903249536info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/03610910903249536info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0806.0582info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:37:50Zoai:ri.conicet.gov.ar:11336/61272instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:37:50.427CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Simulation of spatially correlated clutter fields |
title |
Simulation of spatially correlated clutter fields |
spellingShingle |
Simulation of spatially correlated clutter fields Bustos, Oscar Humberto Image Modeling Simulation Spatial Correlation Speckle |
title_short |
Simulation of spatially correlated clutter fields |
title_full |
Simulation of spatially correlated clutter fields |
title_fullStr |
Simulation of spatially correlated clutter fields |
title_full_unstemmed |
Simulation of spatially correlated clutter fields |
title_sort |
Simulation of spatially correlated clutter fields |
dc.creator.none.fl_str_mv |
Bustos, Oscar Humberto Flesia, Ana Georgina Frery, Alejandro César Lucini, María Magdalena |
author |
Bustos, Oscar Humberto |
author_facet |
Bustos, Oscar Humberto Flesia, Ana Georgina Frery, Alejandro César Lucini, María Magdalena |
author_role |
author |
author2 |
Flesia, Ana Georgina Frery, Alejandro César Lucini, María Magdalena |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Image Modeling Simulation Spatial Correlation Speckle |
topic |
Image Modeling Simulation Spatial Correlation Speckle |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Correlated G distributions can be used to describe the clutter seen in images obtained with coherent illumination, as is the case of B-scan ultrasound, laser, sonar, and synthetic aperture radar (SAR) imagery. These distributions are derived using the square root of the generalized inverse Gaussian distribution for the amplitude backscatter within the multiplicative model. A two-parameter particular case of the amplitude G distribution, called, constitutes a modeling improvement with respect to the widespread KA distribution when fitting urban, forested, and deforested areas in remote sensing data. This article deals with the modeling and the simulation of correlated-distributed random fields. It is accomplished by means of the Inverse Transform method, applied to Gaussian random fields with spatial correlation. The main feature of this approach is its generality, since it allows the introduction of negative correlation values in the resulting process, necessary for the proper explanation of the shadowing effect in many SAR images. © 2009 Taylor & Francis Group, LLC. Fil: Bustos, Oscar Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina Fil: Flesia, Ana Georgina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina Fil: Frery, Alejandro César. Universidade Federal de Alagoas; Brasil Fil: Lucini, María Magdalena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina |
description |
Correlated G distributions can be used to describe the clutter seen in images obtained with coherent illumination, as is the case of B-scan ultrasound, laser, sonar, and synthetic aperture radar (SAR) imagery. These distributions are derived using the square root of the generalized inverse Gaussian distribution for the amplitude backscatter within the multiplicative model. A two-parameter particular case of the amplitude G distribution, called, constitutes a modeling improvement with respect to the widespread KA distribution when fitting urban, forested, and deforested areas in remote sensing data. This article deals with the modeling and the simulation of correlated-distributed random fields. It is accomplished by means of the Inverse Transform method, applied to Gaussian random fields with spatial correlation. The main feature of this approach is its generality, since it allows the introduction of negative correlation values in the resulting process, necessary for the proper explanation of the shadowing effect in many SAR images. © 2009 Taylor & Francis Group, LLC. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/61272 Bustos, Oscar Humberto; Flesia, Ana Georgina; Frery, Alejandro César; Lucini, María Magdalena; Simulation of spatially correlated clutter fields; Taylor ; Communications In Statistics-simulation And Computation; 38; 10; 11-2009; 2134-2151 0361-0918 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/61272 |
identifier_str_mv |
Bustos, Oscar Humberto; Flesia, Ana Georgina; Frery, Alejandro César; Lucini, María Magdalena; Simulation of spatially correlated clutter fields; Taylor ; Communications In Statistics-simulation And Computation; 38; 10; 11-2009; 2134-2151 0361-0918 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1080/03610910903249536 info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/03610910903249536 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0806.0582 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Taylor |
publisher.none.fl_str_mv |
Taylor |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613193699164160 |
score |
13.070432 |