Structural basis for feed-forward transcriptional regulation of membrane lipid homeostasis in Staphylococcus aureus
- Autores
- Albanesi, Daniela; Reh, Georgina; Guerin, Marcelo E.; Schaeffer, Francis; Debarbouille, Michel; Buschiazzo, Alejandro; Schujman, Gustavo Enrique; de Mendoza, Diego; Alzari, Pedro
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The biosynthesis of membrane lipids is an essential pathway for virtually all bacteria. Despite its potential importance for the development of novel antibiotics, little is known about the underlying signaling mechanisms that allow bacteria to control their membrane lipid composition within narrow limits. Recent studies disclosed an elaborate feed-forward system that senses the levels of malonyl-CoA and modulates the transcription of genes that mediate fatty acid and phospholipid synthesis in many Gram-positive bacteria including several human pathogens. A key component of this network is FapR, a transcriptional regulator that binds malonyl-CoA, but whose mode of action remains enigmatic. We report here the crystal structures of FapR from Staphylococcus aureus (SaFapR) in three relevant states of its regulation cycle. The repressor-DNA complex reveals that the operator binds two SaFapR homodimers with different affinities, involving sequence-specific contacts from the helix-turn-helix motifs to the major and minor grooves of DNA. In contrast with the elongated conformation observed for the DNA-bound FapR homodimer, binding of malonyl-CoA stabilizes a different, more compact, quaternary arrangement of the repressor, in which the two DNA-binding domains are attached to either side of the central thioesterase-like domain, resulting in a non-productive overall conformation that precludes DNA binding. The structural transition between the DNA-bound and malonyl-CoA-bound states of SaFapR involves substantial changes and large (>30 Å) inter-domain movements; however, both conformational states can be populated by the ligand-free repressor species, as confirmed by the structure of SaFapR in two distinct crystal forms. Disruption of the ability of SaFapR to monitor malonyl-CoA compromises cell growth, revealing the essentiality of membrane lipid homeostasis for S. aureus survival and uncovering novel opportunities for the development of antibiotics against this major human pathogen.
Fil: Albanesi, Daniela. Institut Pasteur. Unité de Microbiologie Structurale; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; Argentina
Fil: Reh, Georgina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; Argentina
Fil: Guerin, Marcelo E.. Centro Mixto CSIC-UPV/EHU. Unidad de Biofisica; España. Universidad del Pais Vasco; España. Basque Foundation for Science. IKERBASQUE; España
Fil: Schaeffer, Francis. Institut Pasteur. Unité de Microbiologie Structurale; Francia
Fil: Debarbouille, Michel. Institut Pasteur. Unité de Biologie des Bactéries Pathogènes è Gram Positif; Francia
Fil: Buschiazzo, Alejandro. Institut Pasteur. Unité de Microbiologie Structurale; Francia
Fil: Schujman, Gustavo Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; Argentina
Fil: de Mendoza, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; Argentina
Fil: Alzari, Pedro. Institut Pasteur. Unité de Microbiologie Structurale; Francia - Materia
-
Lipid Homeostasis
Transcriptional Regulation
Staphylococcus aureus
Antibiotic target - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/4840
Ver los metadatos del registro completo
id |
CONICETDig_4b5b0f9211a6167b6925883239ebd242 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/4840 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Structural basis for feed-forward transcriptional regulation of membrane lipid homeostasis in Staphylococcus aureusAlbanesi, DanielaReh, GeorginaGuerin, Marcelo E.Schaeffer, FrancisDebarbouille, MichelBuschiazzo, AlejandroSchujman, Gustavo Enriquede Mendoza, DiegoAlzari, PedroLipid HomeostasisTranscriptional RegulationStaphylococcus aureusAntibiotic targethttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1The biosynthesis of membrane lipids is an essential pathway for virtually all bacteria. Despite its potential importance for the development of novel antibiotics, little is known about the underlying signaling mechanisms that allow bacteria to control their membrane lipid composition within narrow limits. Recent studies disclosed an elaborate feed-forward system that senses the levels of malonyl-CoA and modulates the transcription of genes that mediate fatty acid and phospholipid synthesis in many Gram-positive bacteria including several human pathogens. A key component of this network is FapR, a transcriptional regulator that binds malonyl-CoA, but whose mode of action remains enigmatic. We report here the crystal structures of FapR from Staphylococcus aureus (SaFapR) in three relevant states of its regulation cycle. The repressor-DNA complex reveals that the operator binds two SaFapR homodimers with different affinities, involving sequence-specific contacts from the helix-turn-helix motifs to the major and minor grooves of DNA. In contrast with the elongated conformation observed for the DNA-bound FapR homodimer, binding of malonyl-CoA stabilizes a different, more compact, quaternary arrangement of the repressor, in which the two DNA-binding domains are attached to either side of the central thioesterase-like domain, resulting in a non-productive overall conformation that precludes DNA binding. The structural transition between the DNA-bound and malonyl-CoA-bound states of SaFapR involves substantial changes and large (>30 Å) inter-domain movements; however, both conformational states can be populated by the ligand-free repressor species, as confirmed by the structure of SaFapR in two distinct crystal forms. Disruption of the ability of SaFapR to monitor malonyl-CoA compromises cell growth, revealing the essentiality of membrane lipid homeostasis for S. aureus survival and uncovering novel opportunities for the development of antibiotics against this major human pathogen.Fil: Albanesi, Daniela. Institut Pasteur. Unité de Microbiologie Structurale; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Reh, Georgina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Guerin, Marcelo E.. Centro Mixto CSIC-UPV/EHU. Unidad de Biofisica; España. Universidad del Pais Vasco; España. Basque Foundation for Science. IKERBASQUE; EspañaFil: Schaeffer, Francis. Institut Pasteur. Unité de Microbiologie Structurale; FranciaFil: Debarbouille, Michel. Institut Pasteur. Unité de Biologie des Bactéries Pathogènes è Gram Positif; FranciaFil: Buschiazzo, Alejandro. Institut Pasteur. Unité de Microbiologie Structurale; FranciaFil: Schujman, Gustavo Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: de Mendoza, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Alzari, Pedro. Institut Pasteur. Unité de Microbiologie Structurale; FranciaPublic Library Of Science2013-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/4840Albanesi, Daniela; Reh, Georgina; Guerin, Marcelo E.; Schaeffer, Francis; Debarbouille, Michel; et al.; Structural basis for feed-forward transcriptional regulation of membrane lipid homeostasis in Staphylococcus aureus; Public Library Of Science; Plos Pathogens; 9; 1; 1-2013; e1003108-e10031081553-7366enginfo:eu-repo/semantics/altIdentifier/url/http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1003108info:eu-repo/semantics/altIdentifier/doi/10.1371%2Fjournal.ppat.1003108info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/pmid/PMC3536700info:eu-repo/semantics/altIdentifier/url/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3536700/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:16:59Zoai:ri.conicet.gov.ar:11336/4840instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:16:59.287CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Structural basis for feed-forward transcriptional regulation of membrane lipid homeostasis in Staphylococcus aureus |
title |
Structural basis for feed-forward transcriptional regulation of membrane lipid homeostasis in Staphylococcus aureus |
spellingShingle |
Structural basis for feed-forward transcriptional regulation of membrane lipid homeostasis in Staphylococcus aureus Albanesi, Daniela Lipid Homeostasis Transcriptional Regulation Staphylococcus aureus Antibiotic target |
title_short |
Structural basis for feed-forward transcriptional regulation of membrane lipid homeostasis in Staphylococcus aureus |
title_full |
Structural basis for feed-forward transcriptional regulation of membrane lipid homeostasis in Staphylococcus aureus |
title_fullStr |
Structural basis for feed-forward transcriptional regulation of membrane lipid homeostasis in Staphylococcus aureus |
title_full_unstemmed |
Structural basis for feed-forward transcriptional regulation of membrane lipid homeostasis in Staphylococcus aureus |
title_sort |
Structural basis for feed-forward transcriptional regulation of membrane lipid homeostasis in Staphylococcus aureus |
dc.creator.none.fl_str_mv |
Albanesi, Daniela Reh, Georgina Guerin, Marcelo E. Schaeffer, Francis Debarbouille, Michel Buschiazzo, Alejandro Schujman, Gustavo Enrique de Mendoza, Diego Alzari, Pedro |
author |
Albanesi, Daniela |
author_facet |
Albanesi, Daniela Reh, Georgina Guerin, Marcelo E. Schaeffer, Francis Debarbouille, Michel Buschiazzo, Alejandro Schujman, Gustavo Enrique de Mendoza, Diego Alzari, Pedro |
author_role |
author |
author2 |
Reh, Georgina Guerin, Marcelo E. Schaeffer, Francis Debarbouille, Michel Buschiazzo, Alejandro Schujman, Gustavo Enrique de Mendoza, Diego Alzari, Pedro |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
Lipid Homeostasis Transcriptional Regulation Staphylococcus aureus Antibiotic target |
topic |
Lipid Homeostasis Transcriptional Regulation Staphylococcus aureus Antibiotic target |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The biosynthesis of membrane lipids is an essential pathway for virtually all bacteria. Despite its potential importance for the development of novel antibiotics, little is known about the underlying signaling mechanisms that allow bacteria to control their membrane lipid composition within narrow limits. Recent studies disclosed an elaborate feed-forward system that senses the levels of malonyl-CoA and modulates the transcription of genes that mediate fatty acid and phospholipid synthesis in many Gram-positive bacteria including several human pathogens. A key component of this network is FapR, a transcriptional regulator that binds malonyl-CoA, but whose mode of action remains enigmatic. We report here the crystal structures of FapR from Staphylococcus aureus (SaFapR) in three relevant states of its regulation cycle. The repressor-DNA complex reveals that the operator binds two SaFapR homodimers with different affinities, involving sequence-specific contacts from the helix-turn-helix motifs to the major and minor grooves of DNA. In contrast with the elongated conformation observed for the DNA-bound FapR homodimer, binding of malonyl-CoA stabilizes a different, more compact, quaternary arrangement of the repressor, in which the two DNA-binding domains are attached to either side of the central thioesterase-like domain, resulting in a non-productive overall conformation that precludes DNA binding. The structural transition between the DNA-bound and malonyl-CoA-bound states of SaFapR involves substantial changes and large (>30 Å) inter-domain movements; however, both conformational states can be populated by the ligand-free repressor species, as confirmed by the structure of SaFapR in two distinct crystal forms. Disruption of the ability of SaFapR to monitor malonyl-CoA compromises cell growth, revealing the essentiality of membrane lipid homeostasis for S. aureus survival and uncovering novel opportunities for the development of antibiotics against this major human pathogen. Fil: Albanesi, Daniela. Institut Pasteur. Unité de Microbiologie Structurale; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; Argentina Fil: Reh, Georgina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; Argentina Fil: Guerin, Marcelo E.. Centro Mixto CSIC-UPV/EHU. Unidad de Biofisica; España. Universidad del Pais Vasco; España. Basque Foundation for Science. IKERBASQUE; España Fil: Schaeffer, Francis. Institut Pasteur. Unité de Microbiologie Structurale; Francia Fil: Debarbouille, Michel. Institut Pasteur. Unité de Biologie des Bactéries Pathogènes è Gram Positif; Francia Fil: Buschiazzo, Alejandro. Institut Pasteur. Unité de Microbiologie Structurale; Francia Fil: Schujman, Gustavo Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; Argentina Fil: de Mendoza, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; Argentina Fil: Alzari, Pedro. Institut Pasteur. Unité de Microbiologie Structurale; Francia |
description |
The biosynthesis of membrane lipids is an essential pathway for virtually all bacteria. Despite its potential importance for the development of novel antibiotics, little is known about the underlying signaling mechanisms that allow bacteria to control their membrane lipid composition within narrow limits. Recent studies disclosed an elaborate feed-forward system that senses the levels of malonyl-CoA and modulates the transcription of genes that mediate fatty acid and phospholipid synthesis in many Gram-positive bacteria including several human pathogens. A key component of this network is FapR, a transcriptional regulator that binds malonyl-CoA, but whose mode of action remains enigmatic. We report here the crystal structures of FapR from Staphylococcus aureus (SaFapR) in three relevant states of its regulation cycle. The repressor-DNA complex reveals that the operator binds two SaFapR homodimers with different affinities, involving sequence-specific contacts from the helix-turn-helix motifs to the major and minor grooves of DNA. In contrast with the elongated conformation observed for the DNA-bound FapR homodimer, binding of malonyl-CoA stabilizes a different, more compact, quaternary arrangement of the repressor, in which the two DNA-binding domains are attached to either side of the central thioesterase-like domain, resulting in a non-productive overall conformation that precludes DNA binding. The structural transition between the DNA-bound and malonyl-CoA-bound states of SaFapR involves substantial changes and large (>30 Å) inter-domain movements; however, both conformational states can be populated by the ligand-free repressor species, as confirmed by the structure of SaFapR in two distinct crystal forms. Disruption of the ability of SaFapR to monitor malonyl-CoA compromises cell growth, revealing the essentiality of membrane lipid homeostasis for S. aureus survival and uncovering novel opportunities for the development of antibiotics against this major human pathogen. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/4840 Albanesi, Daniela; Reh, Georgina; Guerin, Marcelo E.; Schaeffer, Francis; Debarbouille, Michel; et al.; Structural basis for feed-forward transcriptional regulation of membrane lipid homeostasis in Staphylococcus aureus; Public Library Of Science; Plos Pathogens; 9; 1; 1-2013; e1003108-e1003108 1553-7366 |
url |
http://hdl.handle.net/11336/4840 |
identifier_str_mv |
Albanesi, Daniela; Reh, Georgina; Guerin, Marcelo E.; Schaeffer, Francis; Debarbouille, Michel; et al.; Structural basis for feed-forward transcriptional regulation of membrane lipid homeostasis in Staphylococcus aureus; Public Library Of Science; Plos Pathogens; 9; 1; 1-2013; e1003108-e1003108 1553-7366 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1003108 info:eu-repo/semantics/altIdentifier/doi/10.1371%2Fjournal.ppat.1003108 info:eu-repo/semantics/altIdentifier/doi/ info:eu-repo/semantics/altIdentifier/pmid/PMC3536700 info:eu-repo/semantics/altIdentifier/url/http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3536700/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Public Library Of Science |
publisher.none.fl_str_mv |
Public Library Of Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980927665340416 |
score |
12.993085 |