On heegner points for primes of additive reduction ramifying in the base field

Autores
Kohen, Daniel; Pacetti, Ariel Martín; Masdeu, Marc
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let E be a rational elliptic curve and let K be an imaginary quadratic field. In this article we give a method to construct Heegner points when E has a prime bigger than 3 of additive reduction ramifying in the field K. The ideas apply to more general contexts, like constructing Darmon points attached to real quadratic fields, which is presented in the appendix.
Fil: Kohen, Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Pacetti, Ariel Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Masdeu, Marc. University of Warwick; Reino Unido
Materia
HEEGNER POINTS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/55469

id CONICETDig_3a76f16d85881926b51b1bb442bc6a34
oai_identifier_str oai:ri.conicet.gov.ar:11336/55469
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On heegner points for primes of additive reduction ramifying in the base fieldKohen, DanielPacetti, Ariel MartínMasdeu, MarcHEEGNER POINTShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let E be a rational elliptic curve and let K be an imaginary quadratic field. In this article we give a method to construct Heegner points when E has a prime bigger than 3 of additive reduction ramifying in the field K. The ideas apply to more general contexts, like constructing Darmon points attached to real quadratic fields, which is presented in the appendix.Fil: Kohen, Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Pacetti, Ariel Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Masdeu, Marc. University of Warwick; Reino UnidoAmerican Mathematical Society2018-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55469Kohen, Daniel; Pacetti, Ariel Martín; Masdeu, Marc; On heegner points for primes of additive reduction ramifying in the base field; American Mathematical Society; Transactions Of The American Mathematical Society; 370; 2; 2-2018; 911-9260002-9947CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.ams.org/tran/0000-000-00/S0002-9947-2017-06990-7/info:eu-repo/semantics/altIdentifier/doi/10.1090/tran/6990info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:52:52Zoai:ri.conicet.gov.ar:11336/55469instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:52:53.178CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On heegner points for primes of additive reduction ramifying in the base field
title On heegner points for primes of additive reduction ramifying in the base field
spellingShingle On heegner points for primes of additive reduction ramifying in the base field
Kohen, Daniel
HEEGNER POINTS
title_short On heegner points for primes of additive reduction ramifying in the base field
title_full On heegner points for primes of additive reduction ramifying in the base field
title_fullStr On heegner points for primes of additive reduction ramifying in the base field
title_full_unstemmed On heegner points for primes of additive reduction ramifying in the base field
title_sort On heegner points for primes of additive reduction ramifying in the base field
dc.creator.none.fl_str_mv Kohen, Daniel
Pacetti, Ariel Martín
Masdeu, Marc
author Kohen, Daniel
author_facet Kohen, Daniel
Pacetti, Ariel Martín
Masdeu, Marc
author_role author
author2 Pacetti, Ariel Martín
Masdeu, Marc
author2_role author
author
dc.subject.none.fl_str_mv HEEGNER POINTS
topic HEEGNER POINTS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Let E be a rational elliptic curve and let K be an imaginary quadratic field. In this article we give a method to construct Heegner points when E has a prime bigger than 3 of additive reduction ramifying in the field K. The ideas apply to more general contexts, like constructing Darmon points attached to real quadratic fields, which is presented in the appendix.
Fil: Kohen, Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Pacetti, Ariel Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Masdeu, Marc. University of Warwick; Reino Unido
description Let E be a rational elliptic curve and let K be an imaginary quadratic field. In this article we give a method to construct Heegner points when E has a prime bigger than 3 of additive reduction ramifying in the field K. The ideas apply to more general contexts, like constructing Darmon points attached to real quadratic fields, which is presented in the appendix.
publishDate 2018
dc.date.none.fl_str_mv 2018-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/55469
Kohen, Daniel; Pacetti, Ariel Martín; Masdeu, Marc; On heegner points for primes of additive reduction ramifying in the base field; American Mathematical Society; Transactions Of The American Mathematical Society; 370; 2; 2-2018; 911-926
0002-9947
CONICET Digital
CONICET
url http://hdl.handle.net/11336/55469
identifier_str_mv Kohen, Daniel; Pacetti, Ariel Martín; Masdeu, Marc; On heegner points for primes of additive reduction ramifying in the base field; American Mathematical Society; Transactions Of The American Mathematical Society; 370; 2; 2-2018; 911-926
0002-9947
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/tran/0000-000-00/S0002-9947-2017-06990-7/
info:eu-repo/semantics/altIdentifier/doi/10.1090/tran/6990
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Mathematical Society
publisher.none.fl_str_mv American Mathematical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782222485422080
score 12.982451