On heegner points for primes of additive reduction ramifying in the base field
- Autores
- Kohen, Daniel; Pacetti, Ariel Martín; Masdeu, Marc
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let E be a rational elliptic curve and let K be an imaginary quadratic field. In this article we give a method to construct Heegner points when E has a prime bigger than 3 of additive reduction ramifying in the field K. The ideas apply to more general contexts, like constructing Darmon points attached to real quadratic fields, which is presented in the appendix.
Fil: Kohen, Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Pacetti, Ariel Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Masdeu, Marc. University of Warwick; Reino Unido - Materia
- HEEGNER POINTS
- Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/55469
Ver los metadatos del registro completo
id |
CONICETDig_3a76f16d85881926b51b1bb442bc6a34 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/55469 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On heegner points for primes of additive reduction ramifying in the base fieldKohen, DanielPacetti, Ariel MartínMasdeu, MarcHEEGNER POINTShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let E be a rational elliptic curve and let K be an imaginary quadratic field. In this article we give a method to construct Heegner points when E has a prime bigger than 3 of additive reduction ramifying in the field K. The ideas apply to more general contexts, like constructing Darmon points attached to real quadratic fields, which is presented in the appendix.Fil: Kohen, Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Pacetti, Ariel Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Masdeu, Marc. University of Warwick; Reino UnidoAmerican Mathematical Society2018-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55469Kohen, Daniel; Pacetti, Ariel Martín; Masdeu, Marc; On heegner points for primes of additive reduction ramifying in the base field; American Mathematical Society; Transactions Of The American Mathematical Society; 370; 2; 2-2018; 911-9260002-9947CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.ams.org/tran/0000-000-00/S0002-9947-2017-06990-7/info:eu-repo/semantics/altIdentifier/doi/10.1090/tran/6990info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:52:52Zoai:ri.conicet.gov.ar:11336/55469instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:52:53.178CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On heegner points for primes of additive reduction ramifying in the base field |
title |
On heegner points for primes of additive reduction ramifying in the base field |
spellingShingle |
On heegner points for primes of additive reduction ramifying in the base field Kohen, Daniel HEEGNER POINTS |
title_short |
On heegner points for primes of additive reduction ramifying in the base field |
title_full |
On heegner points for primes of additive reduction ramifying in the base field |
title_fullStr |
On heegner points for primes of additive reduction ramifying in the base field |
title_full_unstemmed |
On heegner points for primes of additive reduction ramifying in the base field |
title_sort |
On heegner points for primes of additive reduction ramifying in the base field |
dc.creator.none.fl_str_mv |
Kohen, Daniel Pacetti, Ariel Martín Masdeu, Marc |
author |
Kohen, Daniel |
author_facet |
Kohen, Daniel Pacetti, Ariel Martín Masdeu, Marc |
author_role |
author |
author2 |
Pacetti, Ariel Martín Masdeu, Marc |
author2_role |
author author |
dc.subject.none.fl_str_mv |
HEEGNER POINTS |
topic |
HEEGNER POINTS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let E be a rational elliptic curve and let K be an imaginary quadratic field. In this article we give a method to construct Heegner points when E has a prime bigger than 3 of additive reduction ramifying in the field K. The ideas apply to more general contexts, like constructing Darmon points attached to real quadratic fields, which is presented in the appendix. Fil: Kohen, Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Pacetti, Ariel Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Masdeu, Marc. University of Warwick; Reino Unido |
description |
Let E be a rational elliptic curve and let K be an imaginary quadratic field. In this article we give a method to construct Heegner points when E has a prime bigger than 3 of additive reduction ramifying in the field K. The ideas apply to more general contexts, like constructing Darmon points attached to real quadratic fields, which is presented in the appendix. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/55469 Kohen, Daniel; Pacetti, Ariel Martín; Masdeu, Marc; On heegner points for primes of additive reduction ramifying in the base field; American Mathematical Society; Transactions Of The American Mathematical Society; 370; 2; 2-2018; 911-926 0002-9947 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/55469 |
identifier_str_mv |
Kohen, Daniel; Pacetti, Ariel Martín; Masdeu, Marc; On heegner points for primes of additive reduction ramifying in the base field; American Mathematical Society; Transactions Of The American Mathematical Society; 370; 2; 2-2018; 911-926 0002-9947 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/tran/0000-000-00/S0002-9947-2017-06990-7/ info:eu-repo/semantics/altIdentifier/doi/10.1090/tran/6990 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Mathematical Society |
publisher.none.fl_str_mv |
American Mathematical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846782222485422080 |
score |
12.982451 |