Two interacting particles in a spherical pore

Autores
Urrutia, Ignacio; Castelletti, Gabriela Marta
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work we analytically evaluate, for the first time, the exact canonical partition function for two interacting spherical particles into a spherical pore. The interaction with the spherical substrate and between particles is described by an attractive square-well and a square-shoulder potentials. In addition, we obtain exact expressions for both the one particle and an averaged two particle density distribution. We develop a thermodynamic approach to few-body systems by introducing a method based on thermodynamic measures [Urrutia, J. Chem. Phys. 133, 104503 (2010) ] for nonhard interaction potentials. This analysis enable us to obtain expressions for the pressure, the surface tension, and the equivalent magnitudes for the total and Gaussian curvatures. As a by product, we solve systems composed of two particles outside a fixed spherical obstacle. We study the low density limit for a many-body system confined to a spherical cavity and a many-body system surrounding a spherical obstacle. From this analysis we derive the exact first order dependence of the surface tension and Tolman length. Our findings show that the Tolman length goes to zero in the case of a purely hard-wall spherical substrate, but contains a zero order term in density for square-well and square-shoulder wall-fluid potentials. This suggests that any nonhard wall-fluid potential should produce a non-null zero order term in the Tolman length.
Fil: Urrutia, Ignacio. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Castelletti, Gabriela Marta. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Materia
few bodies
inhomogeneous fluids
confined fluids
exact results
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/191922

id CONICETDig_4b28dd6d6f74ad4c5988fc2c7af63c19
oai_identifier_str oai:ri.conicet.gov.ar:11336/191922
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Two interacting particles in a spherical poreUrrutia, IgnacioCastelletti, Gabriela Martafew bodiesinhomogeneous fluidsconfined fluidsexact resultshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In this work we analytically evaluate, for the first time, the exact canonical partition function for two interacting spherical particles into a spherical pore. The interaction with the spherical substrate and between particles is described by an attractive square-well and a square-shoulder potentials. In addition, we obtain exact expressions for both the one particle and an averaged two particle density distribution. We develop a thermodynamic approach to few-body systems by introducing a method based on thermodynamic measures [Urrutia, J. Chem. Phys. 133, 104503 (2010) ] for nonhard interaction potentials. This analysis enable us to obtain expressions for the pressure, the surface tension, and the equivalent magnitudes for the total and Gaussian curvatures. As a by product, we solve systems composed of two particles outside a fixed spherical obstacle. We study the low density limit for a many-body system confined to a spherical cavity and a many-body system surrounding a spherical obstacle. From this analysis we derive the exact first order dependence of the surface tension and Tolman length. Our findings show that the Tolman length goes to zero in the case of a purely hard-wall spherical substrate, but contains a zero order term in density for square-well and square-shoulder wall-fluid potentials. This suggests that any nonhard wall-fluid potential should produce a non-null zero order term in the Tolman length.Fil: Urrutia, Ignacio. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Castelletti, Gabriela Marta. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaAmerican Institute of Physics2011-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/191922Urrutia, Ignacio; Castelletti, Gabriela Marta; Two interacting particles in a spherical pore; American Institute of Physics; Journal of Chemical Physics; 134; 6; 2-2011; 64508-6450190021-9606CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1063/1.3544681info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:27:12Zoai:ri.conicet.gov.ar:11336/191922instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:27:12.571CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Two interacting particles in a spherical pore
title Two interacting particles in a spherical pore
spellingShingle Two interacting particles in a spherical pore
Urrutia, Ignacio
few bodies
inhomogeneous fluids
confined fluids
exact results
title_short Two interacting particles in a spherical pore
title_full Two interacting particles in a spherical pore
title_fullStr Two interacting particles in a spherical pore
title_full_unstemmed Two interacting particles in a spherical pore
title_sort Two interacting particles in a spherical pore
dc.creator.none.fl_str_mv Urrutia, Ignacio
Castelletti, Gabriela Marta
author Urrutia, Ignacio
author_facet Urrutia, Ignacio
Castelletti, Gabriela Marta
author_role author
author2 Castelletti, Gabriela Marta
author2_role author
dc.subject.none.fl_str_mv few bodies
inhomogeneous fluids
confined fluids
exact results
topic few bodies
inhomogeneous fluids
confined fluids
exact results
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this work we analytically evaluate, for the first time, the exact canonical partition function for two interacting spherical particles into a spherical pore. The interaction with the spherical substrate and between particles is described by an attractive square-well and a square-shoulder potentials. In addition, we obtain exact expressions for both the one particle and an averaged two particle density distribution. We develop a thermodynamic approach to few-body systems by introducing a method based on thermodynamic measures [Urrutia, J. Chem. Phys. 133, 104503 (2010) ] for nonhard interaction potentials. This analysis enable us to obtain expressions for the pressure, the surface tension, and the equivalent magnitudes for the total and Gaussian curvatures. As a by product, we solve systems composed of two particles outside a fixed spherical obstacle. We study the low density limit for a many-body system confined to a spherical cavity and a many-body system surrounding a spherical obstacle. From this analysis we derive the exact first order dependence of the surface tension and Tolman length. Our findings show that the Tolman length goes to zero in the case of a purely hard-wall spherical substrate, but contains a zero order term in density for square-well and square-shoulder wall-fluid potentials. This suggests that any nonhard wall-fluid potential should produce a non-null zero order term in the Tolman length.
Fil: Urrutia, Ignacio. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Castelletti, Gabriela Marta. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
description In this work we analytically evaluate, for the first time, the exact canonical partition function for two interacting spherical particles into a spherical pore. The interaction with the spherical substrate and between particles is described by an attractive square-well and a square-shoulder potentials. In addition, we obtain exact expressions for both the one particle and an averaged two particle density distribution. We develop a thermodynamic approach to few-body systems by introducing a method based on thermodynamic measures [Urrutia, J. Chem. Phys. 133, 104503 (2010) ] for nonhard interaction potentials. This analysis enable us to obtain expressions for the pressure, the surface tension, and the equivalent magnitudes for the total and Gaussian curvatures. As a by product, we solve systems composed of two particles outside a fixed spherical obstacle. We study the low density limit for a many-body system confined to a spherical cavity and a many-body system surrounding a spherical obstacle. From this analysis we derive the exact first order dependence of the surface tension and Tolman length. Our findings show that the Tolman length goes to zero in the case of a purely hard-wall spherical substrate, but contains a zero order term in density for square-well and square-shoulder wall-fluid potentials. This suggests that any nonhard wall-fluid potential should produce a non-null zero order term in the Tolman length.
publishDate 2011
dc.date.none.fl_str_mv 2011-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/191922
Urrutia, Ignacio; Castelletti, Gabriela Marta; Two interacting particles in a spherical pore; American Institute of Physics; Journal of Chemical Physics; 134; 6; 2-2011; 64508-645019
0021-9606
CONICET Digital
CONICET
url http://hdl.handle.net/11336/191922
identifier_str_mv Urrutia, Ignacio; Castelletti, Gabriela Marta; Two interacting particles in a spherical pore; American Institute of Physics; Journal of Chemical Physics; 134; 6; 2-2011; 64508-645019
0021-9606
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1063/1.3544681
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute of Physics
publisher.none.fl_str_mv American Institute of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082725912510464
score 13.22299